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USP9X regulates centrosome duplication and
promotes breast carcinogenesis
Xin Li1,*, Nan Song1,*, Ling Liu1, Xinhua Liu1, Xiang Ding2, Xin Song3, Shangda Yang1, Lin Shan1, Xing Zhou1,

Dongxue Su1, Yue Wang1, Qi Zhang1, Cheng Cao1, Shuai Ma1, Na Yu1, Fuquan Yang2, Yan Wang1, Zhi Yao4,

Yongfeng Shang1,5 & Lei Shi1,4

Defective centrosome duplication is implicated in microcephaly and primordial dwarfism as

well as various ciliopathies and cancers. Yet, how the centrosome biogenesis is regulated

remains poorly understood. Here we report that the X-linked deubiquitinase USP9X is

physically associated with centriolar satellite protein CEP131, thereby stabilizing CEP131

through its deubiquitinase activity. We demonstrate that USP9X is an integral component of

centrosome and is required for centrosome biogenesis. Loss-of-function of USP9X impairs

centrosome duplication and gain-of-function of USP9X promotes centrosome amplification

and chromosome instability. Significantly, USP9X is overexpressed in breast carcinomas, and

its level of expression is correlated with that of CEP131 and higher histologic grades of breast

cancer. Indeed, USP9X, through regulation of CEP131 abundance, promotes breast carcino-

genesis. Our experiments identify USP9X as an important regulator of centrosome biogenesis

and uncover a critical role for USP9X/CEP131 in breast carcinogenesis, supporting the pursuit

of USP9X/CEP131 as potential targets for breast cancer intervention.
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C
entrosome, a non-membrane organelle in most mamma-
lian cells, is the primary site of microtubule nucleation and
organization during interphase and mitosis in diploid

cells1. Composed of two orthogonally positioned cylindrical
centrioles surrounded by clusters of small granular structures
termed centriolar satellites, centrosome is important for cell
division, polarity, growth and migration2. Similar to DNA,
centrosome duplicates once per cell cycle, which is initiated
around the time of S phase entry and completed by the end of
G2 phase3. Acquisition of more than two centrosomes
(centrosome amplification) severely disturbs mitotic process
and cytokinesis via formation of more than two spindle poles,
resulting in an increased frequency of chromosome segregation
errors (chromosome instability)4. Indeed, centrosome
amplification has been frequently observed in various types of
cancers and believed to be associated with cancer development or
progression5–8. However, the molecular mechanism by which
centrosome duplication is regulated and how centrosome
amplification is introduced and contributes to cancer
development/progression are still poorly understood.

Centrosome-associated CEP family proteins are the active
component of centrosome and are believed to play important
roles in the biogenesis and functionality of centrosome6,9,10. It has
been proposed that CEP protein-coding genes represent potent
tumour suppressors or oncogenes7. Among the CEP proteins,
CEP131 (also termed azacytidine-inducible-1, AZI1) is an evolutio-
narily conserved centriolar satellite protein required for cilia
formation10–13. Interestingly, proteomics analysis and molecular
study suggest that CEP131 is a ubiquitinated protein14,15, and,
significantly, CEP131 has been reported to play an important role
in the maintenance of the genome stability at the time of cell cycle
progression13, suggesting that CEP131 is required for proper
centrosome duplication and hinting a potential role for this protein
in cancer development and progression.

Protein ubiquitination is a reversible reaction that is constantly
opposed by deubiquitination, exemplified by the existence of
a large family of deubiquitinating enzymes (DUBs)16. The human
genome encodes B95 putative DUBs17. Among these DUBs, the
ubiquitin-specific peptidase 9, X-linked (USP9X, also known as
FAM for Drosophila fat facets in mouse18), has been reported to
target several cytosolic proteins and to regulate multiple cellular
activities including protein trafficking/endocytosis19, polarity20,
apoptosis and death21, cell growth and migration22,23, immune
response24,25, neurogenesis26 and autophagy27,28. In addition,
USP9X has been implicated in several pathological states
including Turner syndrome29, X-linked intellectual disability22,
seizures30, Parkinson’s disease28 and various types of
malignancies31–33. However, mechanistic insights into the role
of USP9X in cancer development and progression remain to be
investigated.

In this study, we report that USP9X is an integral component
of centrosome and is required for centrosome biogenesis
through stabilizing the centriolar satellite protein CEP131.
We demonstrate that dysregulation of USP9X contributes
to centrosome amplification, chromosome instability and breast
carcinogenesis.

Results
USP9X is physically associated with CEP131. In order to further
understand the biological function of USP9X, we employed
affinity purification and mass spectrometry to interrogate USP9X
interactome. Specifically, whole-cell extracts from HeLa cells with
doxycycline (Dox)-inducible expression of stably integrated
FLAG-USP9X were prepared and subjected to affinity purifica-
tion and mass spectrometry analysis (Fig. 1a). The results

revealed that USP9X is associated with multiple proteins
including itchy E3 ubiquitin protein ligase (ITCH), an ubiquitin
ligase known to be associated with USP9X (ref. 34). Interestingly,
CEP131, a centriolar satellite protein, was also identified in the
USP9X-containing protein complex (Fig. 1a and Supplementary
Data 1).

To confirm the association of USP9X with CEP131,
co-immunoprecipitation experiments were performed with HeLa
cell extracts and the results showed that USP9X was efficiently
co-immunoprecipitated with CEP131, but not with another
centrosomal protein CP110 (ref. 35), although USP33, another
DUB protein, could be effectively co-immunoprecipitated with
CP110 (ref. 36; Fig. 1b). Reciprocally, CEP131 was efficiently
co-immunoprecipitated with USP9X, but not with USP33,
although CP110 could be efficiently co-immunoprecipitated
with USP33 (Fig. 1b). Similar observations were also detected
in MCF-7 cells, HEK293T cells and U2OS cells (Fig. 1b). The
association of USP9X with other interactors identified in mass
spectrometry analysis was also validated by co-immunoprecipita-
tion assays (Supplementary Fig. 1a).

We next generated a HeLa cell line with Dox-inducible
expression of stably integrated FLAG-CEP131. Immunopurifica-
tion of CEP131 from HeLa cell extracts with anti-FLAG and
analysis of the CEP131-containing protein complex by mass
spectrometry revealed that CEP131 was associated with PCM1
(pericentriolar material 1) and several other proteins (Fig. 1c and
Supplementary Data 1). Remarkably, USP9X was also detected as
a CEP131-interacting protein in these experiments (Fig. 1c).

To further validate the interaction between USP9X and CEP131,
protein fractionation experiments were carried out
by fast protein liquid chromatography (FPLC) with Superose
6 column and a size exclusion approach. The results indicate
that native CEP131 from HeLa cells was eluted with an apparent
molecular mass much greater than that of the monomeric protein,
and that the elution pattern of CEP131 was largely overlapped with
that of USP9X (Fig. 1d). Furthermore, analysis of the FLAG-
CEP131 affinity eluate by FPLC with Superose 6 gel filtration
revealed that the majority of purified FLAG-CEP131 existed in a
multiprotein complex, which peaked in fraction 17 containing
PCM1 and USP9X, but not USP33 (Supplementary Fig. 1b).

To further consolidate the interaction between USP9X and
CEP131 and to gain insights into the molecular detail involved in
the interaction between these two proteins, FLAG-tagged domain
deletion mutants of CEP131 were generated and transfected into
HeLa cells. Co-immunoprecipitation analysis demonstrated that
the N-terminal region of CEP131 upstream of the first coiled-coil
domain is required for the interaction of CEP131 with USP9X
(Fig. 1e, upper panel). Similarly, domain mapping of the
molecular interface of USP9X required for CEP131 binding
revealed that a sequence spanning amino acid 611 to 1,553 in
the middle region of USP9X (USP9X/M) surrounded by the
N-terminal a–a superhelix and the ubiquitin-specific peptidase
domain was required for the interaction of UPS9X with CEP131
(Fig. 1e, lower panel). In addition, pull-down experiments with
bacterially expressed glutathione S-transferase (GST)-CEP131
and Sf9 cell-purified His-tagged USP9X truncation mutants
revealed that USP9X/M directly interacts with CEP131 (Fig. 1f).
Moreover, we demonstrated CEP131 N-terminal region directly
interacts with USP9X/M (Fig. 1g). Collectively, these experiments
revealed a molecular interface between USP9X and CEP131 in
which the middle region of USP9X interacts with the N-terminal
domain of CEP131.

USP9X is co-localized with CEP131 in centrosome. The
physical interaction of deubiquitinase USP9X with centrosomal
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Figure 1 | Deubiquitinase USP9X is physically associated with the centriolar satellite protein CEP131. (a) Immunoaffinity purification of

USP9X-containing protein complexes. Whole-cell extracts from HeLa cells with Dox-inducible expression of stably integrated FLAG-USP9X were purified

with an anti-FLAG affinity column. After extensive washing, the bound proteins were eluted with excess FLAG peptides, resolved and visualized by silver

staining on SDS–PAGE. The protein bands on the gel were recovered and analysed by mass spectrometry. Representative peptide fragments of CEP131 and

peptide coverage of the indicated proteins are shown. Detailed results from the mass spectrometric analysis are provided as Supplementary Data 1.

(b) Whole-cell lysates from HeLa, MCF-7, HEK293Tand U2OS cells were immunoprecipitated (IP) followed by immunoblotting (IB) with antibodies against

the indicated proteins. (c) Immunoaffinity purification of CEP131-containing protein complexes. Representative peptide fragments of USP9X and peptide

coverage of the indicated proteins are shown. Detailed results are provided as Supplementary Data 1. (d) Whole cellular extracts from HeLa cells were

fractionated on Superose 6 size exclusion columns. Chromatographic elution profiles and IB analysis of the chromatographic fractions with antibodies

against the indicated proteins are shown. The elution positions of calibration proteins with known molecular masses are indicated, and an equal volume

from each fraction was analysed. (e) Co-immunoprecipitation analysis of the molecular interface required for the interaction between CEP131 and USP9X.

The conserved domains of CEP131 and USP9X were determined by the SMART programme. (f) Pull-down analysis of the domains involved in the

interaction between USP9X and CEP131 with His-tagged USP9X deletion mutants purified from Sf9 cells and GST-tagged full length of CEP131 purified

from bacteria cells. (g) Pull-down analysis of the domains involved in the interaction between CEP131 and USP9X with GST-tagged deletion mutants of

CEP131 purified from bacteria cells and His-tagged USP9X/M purified from Sf9 cells.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14866 ARTICLE

NATURE COMMUNICATIONS | 8:14866 | DOI: 10.1038/ncomms14866 | www.nature.com/naturecommunications 3



protein CEP131 suggests that USP9X is a centrosome-associated
protein. Immunofluorescent and microscopy analysis indicated
that USP9X was co-localized with the centrosomal markers
Centrin and g-tubulin (Fig. 2a). Strikingly, the physical associa-
tion of USP9X with centrosomes appeared to be dynamic and cell
cycle-dependent: the centrosomal localization of USP9X was
evident in S and G2 phases, weakly detected in G1 phase and
largely diminished in metaphase (Fig. 2b and Supplementary
Fig. 2a). Similar observations were also obtained in normal
human mammary epithelial cells (HMECs; Supplementary
Fig. 2b).

The dynamic pattern of cellular distribution of centrosomal
USP9X is reminiscent of that of CEP131 during cell cycle
reported previously13. Indeed, we demonstrated that USP9X is
co-localized with CEP131 at centrosome (Fig. 2c). Moreover,
immunofluorescent staining also confirmed the co-localization of
USP9X with PCM1 (Fig. 2c), a key factor that restricts CEP131 in
centriolar satellite13. Furthermore, knockdown of the expression
of CEP131 resulted in a diminished centrosomal localization of
USP9X in U2OS cells (Fig. 2d), suggesting that the centrosomal
localization of USP9X is dependent on CEP131.

Next, we investigated the abundance of USP9X and CEP131
during cell cycle and showed that the protein levels of both
USP9X and CEP131 oscillated at a similar pace during cell cycle
progression: both were low in G1 phase and elevated in S and
G2/M phases except 2 h post synchronization, a time when
the abundance of CEP131, but USP9X, increased (Fig. 2e and
Supplementary Fig. 2c,d). Consistently, co-immunoprecipitation
analysis in synchronized cells demonstrated that the physical
association between USP9X and CEP131 was detected primarily
in S and G2 phases of the cell cycle (Fig. 2f). Together, these
results support the argument that USP9X is recruited by and
co-localized with CEP131 to centrosome, suggesting that USP9X
is yet another component of centrosome.

USP9X is functionally linked to the stability of CEP131. To
address the functional significance of the physical interaction and
spatial co-localization between USP9X and CEP131, we examined
the effect of USP9X on the expression of CEP131. Western
blotting (WB) analysis revealed that, while the expression of
centrosome marker protein g-tubulin and loading control protein
b-actin was essentially unchanged, the level of CEP131 was
markedly decreased upon USP9X depletion by distinct short
interfering RNAs (siRNAs) in MCF-7 cells (Fig. 3a, left panel).
Similar observation was obtained in U2OS cells (Supplementary
Fig. 3a, left panel) and HMECs (Supplementary Fig. 3b, left
panel), whereas knockdown of USP33 had no evident effect on
the expression of CEP131 (Fig. 3b). In addition, the mRNA
expression level of CEP131 was not affected upon USP9X
depletion (Fig. 3a, right panel; Supplementary Fig. 3a, right panel
and Supplementary Fig. 3b, right panel). Moreover, the reduction
in CEP131 protein level associated with USP9X depletion was
probably a result of proteasome-mediated protein degradation, as
the effect could be effectively blocked by a proteasome-specific
inhibitor, MG132 (Fig. 3c). These observations indicate that
CEP131 is a substrate of UPS9X.

In support of this deduction, cycloheximide (CHX) chase
assays revealed that USP9X depletion was associated with a
decreased CEP131 half-life in MCF-7 cells (Fig. 3d and Supple-
mentary Fig. 3c) and U2OS cells (Supplementary Fig. 3d).
Moreover, USP9X overexpression was able to restore the
expression of CEP131 and prolong the half-life of CEP131 in
USP9X-deficient cells (Fig. 3e). Consistently, depletion of USP9X
resulted in lost CEP131 staining in centrosome (Fig. 3f), and
examination of the protein expression levels of USP9X and

CEP131 in multiple cell lines showed a correlated pattern of the
expression of these two proteins (Fig. 3g). Together, these results
further support the notion that USP9X controls the stabilization
of CEP131.

To exclude the possibility that USP9X depletion-associated
loss of CEP131 from centrosome is indirectly affected by
other centrosome components, we examined the localization
and abundance of PCM1 after USP9X depletion. The results
demonstrated that the centrosomal localization of PCM1 was
mildly interrupted (Supplementary Fig. 4a), and the protein, but
not mRNA, expression level of PCM1 decreased (Supplementary
Fig. 4b), suggesting that PCM1 is a potential substrate of USP9X.
However, we found that in USP9X-deficient cells, FLAG-tagged
CEP131 could be effectively recruited to centrosome (Supple
mentary Fig. 4c), suggesting that mildly disrupted centrosomal
localization of PCM1 associated with USP9X depletion has
limited effect on CEP131 recruitment. In support of this
argument, we revealed that severe loss of PCM1 indeed impaired
CEP131 centrosomal localization as reported13, while mild
loss of PCM1 failed to do so (Supplementary Fig. 4d). The
expression level of CEP131 was essentially not altered upon
PCM1 knockdown (Supplementary Fig. 4d). Furthermore, we
examined the expression level and localization of Pericentrin and
CEP290, both of which are essential for the centrosomal
restriction of PCM1 and CEP131 (ref. 13), and the results
indicated that the localization and abundance of these proteins
were unaffected upon USP9X knockdown (Supplementary
Fig. 4a,b). Collectively, these results indicate that USP9X
depletion-associated CEP131 loss from centrosome is not
a consequence of a general loss of satellite proteins.

USP9X deubiquitinates CEP131. To gain molecular insights into
the functional connection between USP9X and CEP131, we
examined whether USP9X-promoted CEP131 stabilization is
dependent on the enzymatic activity of USP9X. To this end,
we created two stable MCF-7 cell lines with Dox-inducible
expression of wild-type USP9X (USP9X/wt) and catalytically
inactive mutant of USP9X (USP9X/C1566S)31, respectively.
WB analysis showed that, in cells expressing USP9X/wt, but
not USP9X/C1566S, the protein level of CEP131 dramatically
increased in a Dox dose-dependent manner (Fig. 4a, left panel),
while the mRNA expression level of CEP131 was unchanged
(Fig. 4a, right panel).

To consolidate these observations, we utilized the CRISPR/
Cas9 system to knockout USP9X and demonstrated that,
in USP9X null cells, CEP131 was downregulated and the
downregulation of CEP131 could be reverted by forced expres-
sion of USP9X/wt, but overexpression of USP9X/C1566S could
only moderately revert the CEP131 downregulation
(Supplementary Fig. 5a, upper panel), while the mRNA expres-
sion level of CEP131 was essentially unchanged (Supplementary
Fig. 5a, lower panel). Moreover, treatment of MCF-7 cells with
WP1130, a deubiquitinase inhibitor reported to inhibit USP9X at
low micromolar concentrations33, resulted in a dose-dependent
reduction in the protein, but not mRNA, level of CEP131
(Fig. 4b). Together, these results indicate that USP9X regulates
the stability of CEP131 through its deubiquitinase activity.

Next, immunoprecipitation analysis showed that USP9X
knockdown resulted in increased levels of ubiquitinated
CEP131 species (Fig. 4c and Supplementary Fig. 5b). Further-
more, we demonstrated that the levels of ubiquitinated CEP131
species decreased in a Dox dose-dependent manner in HeLa cells
with Dox-inducible expression of USP9X/wt (Fig. 4d), but
not USP9X/C1566S (Supplementary Fig. 5c). To further identify
the preference lysine residue of USP9X-promoted CEP131
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deubiquitination, we utilized ubiquitin mutant with all lysine
residues replaced by arginine except K29 (K29-only) or K48
(K48-only) or K63 (K63-only), or ubiquitin chain type-specific
antibodies to differentiate ubiquitin species opposed by USP9X
on poly-ubiqitination of CEP131. The results provided in Supple-
mentary Fig. 5d,e indicated that K48-linked ubiquitin species are
major forms opposed by USP9X. Moreover, in vitro deubi-

quitination assays with haemagglutinin (HA)-Ub-conjugated
FLAG-CEP131 and FLAG-USP9X/wt or FLAG-USP9X/C1566S
purified from HeLa cells revealed that USP9X/wt was capable of
deubiquitinating CEP131, whereas USP9X/C1566S was not
(Fig. 4e). Together, these results indicate that USP9X targets
CEP131 for deubiquitination, supporting a notion that CEP131 is
a bona fide substrate of USP9X.
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Figure 3 | USP9X promotes CEP131 stabilization. (a) MCF-7 cells were transfected with control siRNA or different sets of USP9X siRNAs. Cellular

extracts and total RNA were prepared and analysed by western blotting and qRT (quantitative reverse transcription)–PCR, respectively. Each bar represents

the mean±s.d. for biological triplicate experiments. **Po0.01, one-way analysis of variance (ANOVA). (b) MCF-7 cells were transfected with control

siRNA, USP9X siRNA or USP33 siRNA followed by western blotting analysis. (c) MCF-7 cells were transfected with control siRNA or USP9X siRNA

followed by treatment with dimethylsulphoxide or proteasome inhibitor MG132 (10 mM). Cellular extracts were prepared and analysed by western blotting.

(d) MCF-7 cells transfected with control siRNA or USP9X siRNA were treated with CHX and harvested at the indicated time followed by western blotting

analysis. Intensity of each band from biological triplicate experiments was quantified by densitometry with the Image J software with b-actin as a

normalizer. Each bar represents the mean±s.d. for biological triplicate experiments. **Po0.01, two-way ANOVA. (e) Control U2OS cells or U2OS cells

stably expressing USP9X were transfected with control siRNA or USP9X 30UTR siRNA for 96 h followed by western blotting analysis (left panel). Control

U2OS cells or U2OS cells stably expressing USP9X were transfected with control siRNA or USP9X 30UTR siRNA for 96 h, then treated with CHX and

harvested at the indicated time followed by western blotting analysis (right panel). (f) U2OS cells transfected with control siRNA or USP9X siRNA were

fixed and subjected to immunostaining (left panel). Scale bars, 10mm. Percentage of cells with double staining or USP9X knockdown was counted, and the

relative intensity of USP9X or CEP131 in centrosome was analysed by the Image J software (right panel). Each bar represents the mean±s.d. for biological

triplicate experiments. **Po0.01, two-tailed unpaired t-test. The knockdown effect of USP9X was examined by western blotting. (g) Western blotting

analysis of the expression of USP9X and CEP131 in multiple cell lines. Intensity of each band was quantified by densitometry with the Image J software

with b-actin as a normalizer. The correlation coefficient and P values are shown.
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SILAC-based quantitative analysis of human ubiquitin-
modified proteome indicated that four lysine residues in
CEP131, K254, K320, K504 and K510 were potential sites for
ubiquitination, with K254 displaying the highest score and
highest fold of change of the ubiquitination level upon
proteasome inhibitor treatment14. Interestingly, this residue is
located within the N-terminal region of CEP131 that interacts
with USP9X (Fig. 1f,g). Consistently, mass spectrometry analysis
of ubiquitin-conjugated CEP131 revealed two CEP131 peptides
carrying ubiquitin-modified sites, one of them is at K254
(Supplementary Fig. 5f). To test whether K254 ubiquitination
could be targeted by USP9X, we generated two CEP131 mutants,
either lysine residue at 254 or 504 replaced by arginine
(CEP131/K254R or CEP131/K504R). In vitro deubiquitination
assays revealed that, while USP9X was able to remove ubiquitins
of CEP131/K504R, but not that of CEP131/K254R (Fig. 4f),
favouring the argument that USP9X targets K254 of CEP131 for
deubiquitination, although polyubiquitin chains conjugated
onto CEP131/K254R and CEP131/K504R were both
dramatically reduced (Fig. 4f). Moreover, CHX chase assays
showed that depletion of USP9X was associated with a decrease in
the half-life of CEP131/wt, but not that of CEP131/K254R
(Fig. 4g and Supplementary Fig. 5g), although K254R mutant
neither disrupted the interaction of CEP131 with USP9X
(Fig. 4h, left panel) nor affected the cellular distribution of
CEP131 (Fig. 4h, right panel).

USP9X regulates centrosome biogenesis and mitotic fidelity.
To understand the biological significance of USP9X-mediated
deubiquitination/stabilization of CEP131, we next investigated
the effect of USP9X on centrosome biogenesis. To this end, U2OS
cells stably expressing USP9X/wt or USP9X/C1566S were
synchronized by double-thymidine block. At 6 and 12 h after
release from the G1/S block when most cells were in S/G2 and
early M phases, respectively, centrosome duplication was
analysed by immunofluorescent staining of g-tubulin and Cen-
trin. Notably, overexpression of USP9X/wt, but not USP9X/
C1566S, was associated with a significant increase of centrosome
amplification, manifested by the acquisition of more than four
Centrin and two g-tubulin foci (Fig. 5a), while neither USP9X/wt
nor USP9X/C1566S affected cell cycle profile (Supplementary
Fig. 6a). Remarkably, the phenotype evoked by USP9X over-
expression could be largely rescued by CEP131 silencing (Fig. 5b).
Similar observations were also obtained in MCF-7 cells
(Supplementary Fig. 6b). These experiments suggest that USP9X
promotes the generation of excessive centriolar foci through
stabilizing CEP131.

We then investigated the effect of USP9X depletion on
centrosome duplication. To this end, USP9X- or CEP131-
depleted cells were treated with hydroxyurea (HU) to induce
a prolonged S phase. Immunofluorescent and microscopy
analysis showed that, while control cells arrested in S phase
underwent centrosome overduplication, either USP9X or CEP131
depletion resulted in a significant reduction of centrosome
amplification (Fig. 5c and Supplementary Fig. 6c), although
mild defects in centrosome duplication were also observed in
USP9X- or CEP131-depleted U2OS cells in the absence of
HU treatment (Fig. 5c). In addition, the phenotype associated
with USP9X deficiency could be rescued to certain extent by
CEP131 overexpression (Fig. 5c and Supplementary Fig. 6c) or
reverted by USP9X overexpression (Supplementary Fig. 6d).
Meanwhile, in the absence or presence of HU, cell cycle profiles of
these cells were essentially unchanged (Fig. 5c). Collectively, these
results indicate that USP9X and CEP131 are important players in
the regulation of centrosome duplication/biogenesis.

We next asked the question how USP9X-promoted CEP131
stabilization has an impact on centrosome biogenesis. A recent
study reported that CEP131 is involved in centrosome duplica-
tion through regulating centrosomal localization of CDK2
(ref. 37), a cyclin-dependent kinase with established roles in
centrosome biogenesis38,39. Indeed, similar to CEP131 depletion,
USP9X deficiency was associated with an impaired centrosomal
localization of CDK2 (Supplementary Fig. 6e), while the protein
level of CDK2 was unaltered in both USP9X and CEP131
knockdown cells (Supplementary Fig. 6e). Importantly, USP9X
depletion-induced phenotype of CDK2 dislocation could be
rescued by CEP131 overexpression (Supplementary Fig. 6f).
Moreover, USP9X-promoted centrosome amplification was
abrogated upon CDK2 deletion (Supplementary Fig. 6g). These
results point to a role of CEP131-regulated CDK2 localization in
USP9X-promoted centrosome biogenesis.

Then, we examined whether USP9X-induced centrosome
overduplication could result in chromosome instability and
mitotic aberrations. Fluorescent microscopy and live cell imaging
analysis showed that overexpression of USP9X or CEP131 was
associated with an increase of mitotic aberrations characterized
by a multipolar spindle or asymmetric, bipolar spindle with
lagging chromosomes (Fig. 5d, Supplementary Fig. 7 and Supple-
mentary Movie 1) and the phenotype associated with USP9X
overexpression could be, at least partially, rescued by CEP131
silencing (Fig. 5d, Supplementary Fig. 7 and Supplementary
Movie 1). Together, these results indicate that overexpression of
USP9X promotes centrosome amplification and mitotic defects in
a CEP131-dependent manner.

USP9X and CEP131 are overexpressed in breast carcinomas.
Since centrosome amplification is a common feature of
tumour cells40–43, it would be interesting to know the expression
level of USP9X/CEP131 in clinical carcinomas. Analysis of
the integrated cancer DNA microarray database Oncomine
(https://www.oncomine.com)44 revealed that, compared to its
expression in normal mammary tissues, USP9X is indeed
markedly upregulated in breast carcinoma samples (Fig. 6a).
Consistently, the expression level of USP9X was significantly
higher in breast carcinoma samples than that in normal
mammary tissues (Fig. 6b,c, left panel). The same is true in
cultured breast cancer cells and normal breast epithelial cells
(Fig. 3g). In agreement with our main argument, when the
expression level of USP9X was plotted against that of CEP131, a
strong positive correlation was found (Fig. 6c, right panel).
Moreover, immunohistological analysis of the protein levels of
USP9X and CEP131 using human tissue arrays that included
breast carcinoma samples and normal mammary tissues showed
that both USP9X and CEP131 were highly expressed in
breast carcinoma samples (Fig. 6d, upper panel), and the levels
of their expression were strongly correlated with each other
(Fig. 6d, lower panel) and with the progression of breast cancer
(Fig. 6d, upper panel). Collectively, these observations suggest a
potential role for USP9X-promoted CEP131 stabilization in
breast carcinogenesis.

As the protein abundance of PCM1 is also subjected to USP9X
regulation (Supplementary Fig. 4b), we next examined the
expression level of PCM1 in clinical samples. As demonstrated
in Supplementary Fig. 8a,b, the protein abundance of PCM1 was
indeed elevated in breast cancer and correlated with that of
USP9X. However, similar results were not observed for CEP290,
another essential satellite protein (Supplementary Fig. 8a,b),
arguing against the possibility that the elevated expression of
USP9X, CEP131 and PCM1 is resulting from aberrant centriolar
satellites amplification.
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Figure 5 | USP9X-promoted CEP131 stabilization regulates centrosome amplification and chromosome stability. (a) Control U2OS cells and cells with

Dox-inducible expression of USP9X/wt or USP9X/C1566S in the presence of Dox were synchronized with double-thymidine block and released followed by

immunostaining with antibodies against the indicated proteins (left panel). Scale bar, 10mm. Population of cells with the indicated numbers of foci at

different time points were counted (right panel). Each bar represents the mean±s.d. for biological triplicate experiments. **Po0.01, one-way ANOVA.

(b) U2OS cells stably expressing USP9X were transfected with indicated siRNAs. The cells were synchronized with double-thymidine block and released

followed by immunostaining with antibodies against the indicated proteins (upper panel). Scale bar, 10mm. Population of cells with the indicated numbers

of foci at different time points were counted (lower left panel). Each bar represents the mean±s.d. for biological triplicate experiments. **Po0.01, one-way

ANOVA. The expression of indicated proteins was examined by western blotting (lower right panel). (c) U2OS cells transfected with indicated siRNAs or

genes were treated with HU, followed by analysis of centrosome numbers with immunostaining (upper panel). Scale bar, 10mm. Population of cells with the

indicated numbers of foci were counted. Each bar represents the mean±s.d. for biological triplicate experiments (middle left panel). *Po0.05; **Po0.01,

one-way ANOVA. The expression of USP9X and CEP131 from cells with HU treatment was examined by western blotting (middle right panel). Cell cycle

profiles were determined by FACS (lower panel). (d) MCF-7 Cells stably expressing USP9X or CEP131 were transfected with indicated siRNAs and

synchronized with double-thymidine block. Cells were collected after 12 h of release and stained (upper panel). Scale bar, 10 mm. Percentage of cells with

different chromosomal instability phenotypes in mitosis was calculated and shown (middle panel). Percentage of cells with multipolar mitotic phenotype

was analysed (lower panel). Each bar represents the mean±s.d. for biological triplicate experiments. **Po0.01, one-way ANOVA. The expression of

indicated proteins was examined by western blotting (lower panel).
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USP9X/CEP131 axis promotes breast carcinogenesis. In order
to support a role of USP9X/CEP131 in breast carcinogenesis, we
developed MCF-7 cells with Dox-inducible expression of stably

integrated FLAG-USP9X or FLAG-CEP131. Colony formation
assays showed that overexpression of USP9X or CEP131 was
associated with moderate increases in colony numbers of MCF-7
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Figure 6 | The expression of USP9X and CEP131 is elevated and correlated in breast cancer. (a) Box plots of USP9X transcript levels in normal human

mammary tissues and breast carcinoma samples based on four independent data sets from Oncomine. (b) The expression level of USP9X in 11 normal

mammary tissues and 15 breast carcinomas was quantified by qRT–PCR and normalized as indicated. **Po0.01, Student’s t-test. (c) Cellular extracts from
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quantified by the Image J software and normalized to b-actin. The correlation coefficient and P values are shown (right panel). (d) Immunohistochemistry
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cells (Fig. 7a, upper panel). Consistently, knockdown of USP9X or
CEP131 severely impeded the colony formation of MCF-7 cells
(Fig. 7a, lower panel). In addition, both USP9X-deficient and
CEP131-deficient MCF-7 cells exhibited a much slower growth
rate (Fig. 7b). Significantly, overexpression of CEP131 could, at
least partially, offset the effect of USP9X knockdown on cell
viability (Fig. 7c). Since centrosome dysregulation-associated
mitotic defects could result in genome instability and cell apop-
tosis13,45,46, we examined whether USP9X-promoted CEP131
stabilization plays a role in genome stability and cell death.
Indeed, we demonstrated that either USP9X or CEP131 depletion
resulted in marked accumulation of gH2AX (Supplementary
Fig. 9a) and apoptosis of MCF-7 cells (Supplementary Fig. 9b).
Moreover, USP9X depletion-associated effects could be alleviated
by CEP131 overexpression (Supplementary Fig. 9a,b). These
results indicate that USP9X-promoted CEP131 stabilization is
required for breast cancer cell survival.

To investigate whether and how other substrates of USP9X might
affect the cellular function of USP9X-promoted CEP131 stabiliza-
tion, we analysed by WB analysis the expression of IPO5, PRMT5
and PPM1B, which were also identified as interactors of USP9X
(Supplementary Fig. 1a), and the results indicate that the protein
abundance of these proteins was essentially unchanged upon USP9X
knockdown (Supplementary Fig. 10a). In agreement with previous
reports31,32,34,47, we did find that USP9X knockdown resulted in
decreased expression of ITCH (Supplementary Fig. 10a), an E3 ligase
involved in carcinogenesis32,48, and MCL1, an anti-apoptotic
regulator implicated in cancer49,50. However, CEP131 depletion
had minimal effect on the expression level of ITCH and MCL1
(Supplementary Fig. 10a). In addition, USP9X, but not CEP131,
could be co-immunoprecipitated by ITCH or by MCL1 (Supple-
mentary Fig. 10b), and colony formation assay demonstrated that,
although overexpression of ITCH or MCL1 could rescue the growth
inhibitory phenotype associated with USP9X depletion to certain
extent as CEP131 did, simultaneous expression of CEP131 and
ITCH or MCL1 had an additive effect (Supplementary Fig. 10c).
Moreover, USP9X depletion-associated defects of centrosome
amplification could not be reverted by forced expression of either
ITCH or MCL1 (Supplementary Fig. 10d), and knockdown of ITCH
or MCL1 had no effect on centrosomal localization of USP9X and
CEP131 (Supplementary Fig. 10e). These results suggest that
CEP131 functions cooperatively with but independently of other
USP9X substrates in USP9X-promoted breast cancer cell
survival, and also provide an explanation for why overexpression
of CEP131 could not fully restore the growth of USP9X knocked
down tumour cells.

To further establish the role of USP9X/CEP131 in breast
carcinogenesis, we transplanted USP9X- or CEP131-deficient
MCF-7 cells onto the mammary fat pads of athymic mice.
Notably, tumour growth in athymic mice receiving tumour
transplants with depletion of either USP9X or CEP131 was
greatly suppressed (Fig. 7d). Moreover, we demonstrated that
overexpression of CEP131 in USP9X-deficient tumours could
restore the growth of breast tumours (Fig. 7e). Next, we examined
the centrosome numbers in cultured xenografts with immuno-
fluorescent assays. The results in Fig. 7f showed that the
percentage of cells with centrosome amplification was reduced
in USP9X knocked down tumours, and this effect could be
overridden by forced expression of CEP131. Together, these
results support a notion that USP9X promotes breast carcinogen-
esis through stabilizing CEP131.

Discussion
In this study, we found that the X-linked deubiquitinase USP9X is
associated with centriolar satellite protein CEP131.

Immunofluorescent microscopy analysis revealed that in G1/S/
G2 phases of the cell cycle USP9X is distributed not only in the
cytoplasm but also in the centrosome, where it is physically and
functionally associated with CEP131, indicating that USP9X is an
integral component of the centrosome. Thus far, a number of
studies describe USP9X as a cytoplasmic and membrane-
associated protein19,20, although mitochondrial31 and nuclear
localizations51 of USP9X have also been reported. Our
observation that USP9X is localized in the centrosome expands
the spatial thus functional domains of this deubiquitinase. The
diversified cellular localization of USP9X could be a reflection of a
dynamic nature of distribution of this protein in cells. Indeed, it
was reported that expressing cadherin cell adhesion molecules in
fibroblasts altered USP9X localization19. We showed that the
physical association of USP9X with centrosomes is cell cycle-
dependent and mostly detected in S and G2 phases. Remarkably,
disrupting protein trafficking or the Golgi in polarized epithelia
results in relocation or accumulation of USP9X, suggesting that
this protein shuttles between a number of organelles and
vesicles52. These observations highlight the need to interrogate
USP9X–substrate interactions with approaches sorting specific
subcellular compartments instead of more disruptive biochemical
methods that extensively destroy cellular architectures52.

A recently study in Usp9x knockout mouse identified
disruption of the cytoskeleton as the main underlying conse-
quence of the loss of Usp9x (ref. 22). Since cytoskeleton is
composed of microtubules and actin filaments and centrosome is
a microtubule-nucleation centre, our finding that USP9X is an
integral component of centrosome provides a more appropriate
explanation for Usp9x ablation-induced cytoskeleton collapse in
mouse. We showed that USP9X, through stabilizing CEP131,
regulates centrosome duplication and mitotic fidelity. In addition
to our study, numerous reports showed the involvement of
deubiquitination enzymes including BAP1, USP33, USP1, USP44,
CYLD and USP21 in centrosome regulation and chromosomal
stability36,53–57, supporting a notion that deubiquitinases are the
key regulators in centrosome homeostasis and genome stability.

CEP131 is a centriolar satellite protein and plays critical roles
in the maintenance of genome stability13,58. Thus, understanding
the mechanism by which the abundance of CEP131 is regulated is
of great importance. It was reported that the expression of
CEP131 could be induced by DNA methyltransferase inhibitor
5-azacytidine13, and CEP131 is transcriptionally regulated by
transcription factor SP1 (ref. 59). Our study indicates that
USP9X, through its deubiquitinase activity, stabilizes CEP131 and
regulates the abundance of CEP131 at a post-transcriptional level.
Our observations support a model in which overexpression of
USP9X in breast cancer results in elevated CEP131 protein,
which, in turn, leads to centrosome amplification and genome
instability, and eventually contributes to the development/
progression of breast cancer.

Although we observed a better correlation between PCM1 and
USP9X than that between CEP131 and USP9X in breast cancer
samples, the effect of USP9X depletion on the expression of
PCM1 was not as dramatic as that of CEP131, suggesting
that PCM1 is a potential, but not major, substrate of USP9X
in centrosome. These results likely explain why CEP131
overexpression could not fully compensate centrosomal biogen-
esis defects induced by USP9X depletion. Combining the findings
that mildly disrupted centrosomal localization of PCM1 has
minimal effect on CEP131 recruitment and the observations
that USP9X directly interacts with CEP131 and opposes its
polyubiquitin linkages in vitro, we get the conclusion that the
effect of USP9X on CEP131 stabilization is attributed to the
interplay between these two molecules but not through USP9X
targeting other substrates like PCM1, and USP9X-regulated
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PCM1 stabilization on centrosome activity, if it does so, seems to
be independent of USP9X-promoted CEP131 stabilization.
We believe that investigating whether/how PCM1 contributes to
USP9X-regulated centrosome biogenesis will be helpful in
understanding the functionality of USP9X in centrosome biology.

In addition to the canonical pathway, centrosome duplication
can emerge from de novo assembly in which PCM clouds
containing typical centrosomal proteins such as g-tubulin and
pericentrin provide localized environment supporting centriolar
assembly60. Specifically, de novo centriole assembly can be
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induced by overexpression of pericentrin61. A recent study
indicates that ATF5, an essential PCM protein, interacts with
both polyglutamylated tubulin on centriole and pericentrin in the
PCM, and controls the centriole–PCM interaction60. It will be
interesting to investigate whether CEP131 links PCM to centriole
through ATF5 or/and CDK2, thereby regulating centrosome
amplification and genome instability.

Among the polyubiquitin chains, K11, K29 and K48 poly-
ubiquitin conjugates are considered as the most relevant ones
associated with proteasome degradation14,62–64, while K63
ubiquitin linkages are mainly involved in non-proteasomal
pathways as a scaffolding modification in signal transduction65.
Given that the physical association of USP9X with CEP131 was
detected primarily in S and G2 phases of the cell cycle, we did not
investigate K11 ubiquitin linkages that are preferentially
produced during mitosis and early G1 (refs 62,66). In agree-
ment with our observations that USP9X deubiquitinates K48
poly-ubiquitylated CEP131, USP9X has been reported to
efficiently remove degradative K48-linked polyubiquitin chains
on MCL1 (ref. 31) and XIAP67. Considering that the preference
of USP9X on different types of ubiquitin linkages has been
reported31,67,68, we assume that USP9X opposes specific ubiquitin
linkages in a substrate- or context-dependent manner.

A number of proteins involved in tumorigenesis have been
reported to be substrates of USP9X (ref. 52). We believe that the
link between CEP131 and USP9X is one of multiple pathways
that appear to act in cancer cells. The observations that
simultaneous expression of USP9X substrates rescued MCF-7
colony formation in an additive manner suggest that CEP131
functions cooperatively with but independently of other USP9X
substrates and point to a role of USP9X at the apex of a regulation
network that affects multiple cellular processes. Thereby, it will be
interesting to explore the relationship between substrate diversity
and cellular activities of USP9X. It will be also important to
investigate the mechanisms underlying USP9X dysregulation in
breast cancer and the role of the USP9X/CEP131 axis in the
development/progression of breast cancer.

Methods
Antibodies and reagents. The sources of antibodies against the following
proteins were: CEP131 (sc-163722, 1:200 for immunofluorescence (IF)), WDR77
(sc-376556, 1:500 for WB), CEP290 (sc-70031, 1:200 for IF and 1:1,000 for WB),
CDK2 (sc-6248, 1:200 for IF and 1:500 for WB), PCM1 (sc-398365, 1:200 for IF)
and HA (sc-805, 1:500 for WB) from Santa Cruz Biotechnology; b-actin
(A1978, 1:5,000 for WB), ITCH (SAB4200036, IP and 1:1,000 for WB), USP9X
(WH0008239M1 for WB), g-tubulin (T6557, 1:200 for IF) and FLAG (F3165, IP
and 1:10,000 for WB) from Sigma; Histone H3S10 (05-1336, 1:2,000 for WB) and
Centrin (04-1624, 1:500 for IF) from Millipore; a-tubulin (ab80779, 1:200 for IF),
g-tubulin (ab11317, 1:2,000 for WB), Pericentrin (ab28144, 1:200 for IF), CEP131

(ab99379, IP and 1:2,000 for WB), ubiquitin linkage-specific K48 (140601, 1:500 for
WB), ubiquitin linkage-specific K63 (179434, 1:500 for WB) and Histone
H3(ab1791, 1:10,000 for WB) from Abcam; USP9X (55054-1-AP, IP, 1:200 for
IF and 1:2,000 for WB), CEP131 (25735-1-AP, IP, 1:200 for IF and 1:1,000
for WB), USP33 (20445-1-AP, IP and 1:1,000 for WB), CP110 (12780-1-AP,
IP and 1:1,000 for WB), PPM1B (13193-1-AP, IP and 1:1,000 for WB), SPTBN1
(19722-1-AP, 1:1,000 for WB), PFKFB3 (13763-1-AP, 1:1,000 for WB), PRMT5
(18436-1-AP, IP and 1:1,000 for WB), STK38 (11105-1-AP, 1:1,000 for WB),
MCL1 (16225-1-AP, IP and 1:1,000 for WB) and PCM1 (19856-1-AP, 1:1,000 for
WB) from Proteintech; IPO5 (MA1-10886, IP and 1:1,000 for WB) from Thermo
Fisher Scientific and Myc (M047-3, IP and 1:1,000 for WB) from MBL. Anti-c-Myc
agarose affinity gel (A7470), Myc peptide (M2435), anti-FLAG M2 affinity gel
(A2220), 3� FLAG peptide (F4799), anti-HA affinity gel (E6779), HU (H8627),
thymidine (T1895), MG132 (SML1135) and Dox (D9891) were purchased from
Sigma. CHX (0970, working concentration 50mg ml� 1) was purchased from
TOCRIS. Uncropped scans for blots from Figs 1–7 are shown in Supplementary
Fig. 11 in the Supplementary Information.

Plasmids. The FLAG-tagged or Myc-tagged CEP131 carried by pLenti-Tight-Puro
vector or pLenti-Hygro were amplified from CEP131 cDNA purchased from Open
Biosystem. The dsRed-tagged CEP131 was created by integrating the dsRed cassette
into pLenti-Hygro-CEP131 vector. The K254R and K504R CEP131 mutants were
constructed by quick change strategy using a point mutation kit from Stratagene.
The human FLAG-tagged USP9X and USP9X/C1566S mutant carried by
pLenti-Tight-Puro vector or pLenti-Hygro vector were amplified from wild-type
and catalytic mutant of V5-tagged USP9X cDNA kindly provided by Dr Feng Cong
(Novartis Institutes for BioMedical Research, Cambridge), respectively. Green
fluorescent protein (GFP)-tagged USP9X was created by incorporation of GFP
open reading frame into the N-terminal of FLAG-USP9X-pLenti-Tight-Puro
vector. Cyan fluorescent protein (CFP) was fused to the N terminal of cyclin A2
carried by pLenti-Neo vector. Serial truncations of FLAG-tagged CEP131 or
USP9X were amplified from CEP131 cDNA or USP9X cDNA, respectively, and
subcloned into pLenti-Hygro vector, whereas full length or truncations of GST
fusion CEP131 were amplified and integrated into pGEX-4T-3 vector. Deletion
mutants of USP9X expressed in insect cells were carried by pFastBac-HTA vector.
The FLAG-tagged MCL1 or FLAG-tagged ITCH carried by pLenti-Neo vector was
amplified from MCL1 cDNA or ITCH cDNA purchased from Origene or Open
Biosystem, respectively. CRISPR/Cas9 constructs lentiCas9-Blast (Addgene
plasmid #52962) and lentiGuide-Puro (Addgene plasmid #52963) were gifts from
Dr Feng Zhang (Broad Institute, Cambridge). HA-tagged ubiquitin K48-only
(Plasmid #17605) and K63-only (Plasmid #17606) were gifts from Dr Ted Dawson
(Johns Hopkins University School of Medicine, Baltimore). HA-tagged ubiquitin
K29-only was created by point mutational cloning from the HA-Ub/mt with all
lysine residues replaced by arginine (gift from Dr Luyang Sun, Peking University
Health Science Center).

Cell culture. MCF-7, U2OS, HeLa, HEK293, HEK293T, MDA-MB-231,
MDA-MB-453, HCT116, T47-D, HT1080, HMEC and Sf9 cells were obtained
from the American Type Culture Collection (Manassas, VA) and were cultured
under the manufacturer’s instructions. Ishkawa and ECC1 cells were kindly
provided by Dr Myles Brown (Dana-Farber Cancer Institute, Boston) and were
cultured in RPMI 1640 medium with 10% of fetal bovine serum (FBS, Biological
Industries). Cells that allow protein expression under Dox treatment were created
in two steps. First, cells were infected with lentivirus carrying rtTA and subjected to
Neomycin selection. Subsequently, the established rtTA cells were infected with
virus carrying pLenti-Tight-Puro vector that encodes USP9X or CEP131, followed
by puromycin selection. All of the cells integrated with rtTA were cultured in

Figure 7 | USP9X promotes breast carcinogenesis through regulating CEP131 abundance. (a) Colony formation assays of MCF-7 cells with

Dox-inducible expression of USP9X or CEP131 in the absence or presence of Dox (upper panel). **Po0.01, Student’s t-test. Colony formation assays of

MCF-7 cells stably transfected with USP9X shRNA or CEP131 shRNA (lower panel). Representative images from biological triplicate experiments are

shown. (b) MCF-7 cells stably transfected with USP9X shRNA or CEP131 shRNA were subjected to growth viability assay (left panel). Each bar represents

the mean±s.d. for biological triplicate experiments. **Po0.01, two-way ANOVA. western blotting analysis of the indicated proteins is shown (right panel).

(c) MCF-7 cells with Dox-inducible expression of CEP131 were stably transfected with USP9X shRNA for colony formation assays in the absence or

presence of Dox. Representative images from biological triplicate experiments (left panel) and western blotting analysis of the indicated proteins (right

panel) are shown. (d) MCF-7 infected with control lentiviruses or lentiviruses carrying shRNA against USP9X or CEP131 were transplanted on athymic mice

(BALB/c; Charles River, Beijing, China) and tumour volumes were measured weekly. Each point represents the mean±s.d. for different animal

measurements (n¼6). **Po0.01, one-way ANOVA for tumour weight analysis and two-way ANOVA for tumour volume analysis. The levels of indicated

proteins in these tumours were examined by western blotting. (e) USP9X-deficient MCF-7 tumours stably transfected with control vector or vector

encoding CEP131 were transplanted onto athymic mice and tumour volumes were measured weekly. Each point represents the mean±s.d. for different

animal measurements (n¼ 6). *Po0.05; **Po0.01, one-way ANOVA for tumour weight analysis and two-way ANOVA for tumour volume analysis. The

levels of indicated proteins in these tumours were examined by western blotting. (f) The xenograft tumours from four mice of each group as indicated were

cultured and immunostained with antibodies against Centrin and USP9X. Scale bars, 10mm. Representative images from two mice of each group are shown.

More than one hundred cells from each xenograft were counted. Each bar represents the mean±s.d. for measurements of four xenografts in each group.

*Po0.05, one-way ANOVA.
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Tet Approved FBS and medium from Clontech. All of the cells were authenticated
by examination of morphology and growth characteristics, and were confirmed
to be mycoplasma-free.

In vitro deubiquitination assay. HeLa cells expressing full-length CEP131 and
HA-ubiquitin were collected and then lysed in RIPA Buffer (300 mM NaCl,
0.5% sodium deoxycholate, 0.1% SDS, 1% Nonidet P-40 and 50 mM Tris-Cl,
pH 8.0). The resulting lysate was purified with anti-FLAG affinity gel, eluted
with 3� FLAG peptide and then subjected to HA affinity gel to enrich
HA-Ub-conjugated CEP131 (CEP131-Ub). HeLa cells expressing full-length
USP9X (wild type or C1566S mutant) were collected and then lysed in RIPA Buffer
(300 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 1% Nonidet P-40 and
50 mM Tris-Cl, pH 8.0). The resulting lysate was incubated with anti-FLAG
affinity gel for 2 h and the beads were then washed five times with RIPA Buffer.
Recombinant USP9X and CEP131-Ub were incubated in buffer containing 50 mM
HEPES, pH 7.5, 10 mM 2-mercaptoethanol and 0.5 mM EDTA at 30 �C for 30 min.
The reactions were stopped by boiling for 5 min in 5� SDS–PAGE loading
buffer followed by WB analysis with appropriate antibodies.

Immunofluorescence. Cells on glass coverslips (BD) were fixed with 2% paraf-
ormaldehyde and permeabilized with 0.2% Triton X-100 in PBS. Samples were
then blocked in 5% donkey serum in the presence of 0.1% Triton X-100 and
stained with the appropriate primary and secondary antibodies coupled to
AlexaFluor 488 or 594 (Invitrogen). To avoid bleed-through effects in double-
staining experiments, each dye was scanned independently in a multitracking
mode. More than 90 cells in each treatment were scored in biological triplicate
experiments.

USP9X knockout cell generation. USP9X knockout HMEC cells were generated
by co-transfection of plasmid encoding FLAG-Cas9 (lentiCas9-Blast) and sgRNA
plasmid (lentiGuide-Puro) targeting USP9X (USP9X sgRNA 50-GTTGAT-
CATGTCATCCAACT-30). Forty-eight hours after transfection, cells were selected
by blasticidin (5mg ml� 1) and puromycin (1mg ml� 1) for 2 days. Single colony
was picked up for continuous culture and USP9X disruption was confirmed by
WB analysis.

Immunopurification and silver staining. Lysates from HeLa cells stably expres-
sing FLAG-USP9X or CEP131 were prepared by incubating the cells in lysis
buffer containing protease inhibitor cocktail (Roche). Anti-FLAG immunoaffinity
columns were prepared using anti-FLAG M2 affinity gel (Sigma) following the
manufacturer’s suggestions. Cell lysates were obtained from B5� 108 cells
and applied to an equilibrated FLAG column of 1 ml bed volume to allow for
adsorption of the protein complex to the column resin. After binding, the column
was washed with cold PBS plus 0.2% Nonidet P-40. FLAG peptide (Sigma) was
applied to the column to elute the FLAG protein complex as described by the
vendor. The elutes were collected and visualized on NuPAGE 4–12% Bis-Tris
gel (Invitrogen), followed by silver staining with a silver staining kit (Pierce). The
distinct protein bands were retrieved and analysed by liquid chromatography–
tandem mass spectrometry (LC-MS/MS).

Nano-HPLC-MS/MS analysis of USP9X or CEP131 protein complex. To iden-
tify proteins associated with FLAG-USP9X or CEP131, LC-MS/MS analysis was
performed using a Thermo Finnigan LTQ linear ion trap mass spectrometer in line
with a Thermo Finnigan Surveyor MS Pump Plus HPLC system. Tryptic peptides
generated were loaded onto a trap column (300SB-C18, 5� 0.3 mm, 5 mm particle;
Agilent Technologies, Santa Clara, CA), which was connected through a zero dead
volume union to the self-packed analytical column (C18, 100 mm i.d� 100 mm,
3 mm particle; SunChrom, Germany). The peptides were then eluted over a gradient
(0–45% B in 55 min, 45–100% B in 10 min, where B¼ 80% acetonitrile,
0.1% formic acid) at a flow rate of 500 nl min� 1 and introduced online into the
linear ion trap mass spectrometer (Thermo Fisher Corporation, San Jose, CA)
using nano electrospray ionization. Data-dependent scanning was incorporated to
select the five most abundant ions (one microscan per spectra; precursor isolation
width 1.0 m/z, 35% collision energy, 30 ms ion activation, exclusion duration: 90 s;
repeat count: 1) from a full-scan mass spectrum for fragmentation by collision
induced dissociation. MS data were analysed using SEQUEST (v. 28) against NCBI
human protein database (14 December 2011 downloaded, 33,256 entries), and
results were filtered, sorted and displayed using the Bioworks 3.2. Peptides
(individual spectra) with Preliminary Score (Sp)Z500; Rank of Sp (RSp)r5;
and peptides with þ 1, þ 2 or þ 3 charge states were accepted if they were fully
enzymatic and had a cross-correlation (Xcorr) of 1.90, 42.75 and 43.50,
respectively. The following residue modifications were allowed in the search:
carbamidomethylation on cysteine as fix modification and oxidation on
methionine as variable modification. Peptide sequences were searched using
trypsin specificity, allowing a maximum of two missed cleavages. Sequest was
searched with a peptide tolerance of 3.0 Da and a fragment ion tolerance of 1.0 Da.

FPLC chromatography. HeLa cell nuclear extracts or FLAG-CEP131-containing
protein complexes were applied to a Superose 6 size exclusion column
(GE Healthcare) that had been equilibrated with dithiothreitol-containing
buffer and calibrated with protein standards (Amersham Biosciences). The
column was eluted at a flow rate of 0.5 ml min� 1 and fractions were collected.

LC-MS/MS analysis of CEP131 ubiquitination sites. The tryptic peptides
of CEP131-conjugated ubiquitin were dissolved in 0.1% formic acid (FA), directly
loaded onto a reversed-phase pre-column (Acclaim PepMap 100, Thermo
Scientific). Peptide separation was performed using a reversed-phase analytical
column (Acclaim PepMap RSLC, Thermo Scientific). The gradient comprises an
increase from 2 to 35% solvent B (0.1% FA in 98% acetonitrile (ACN)) over 12 min
and climbing to 80% in 4 min and then holding at 80% for the last 4 min, all at a
constant flow rate of 400 nl min� 1 on an EASY-nLC 1000 UPLC system. The
resulting peptides were analysed by Q Exactive hybrid quadrupole-Orbitrap mass
spectrometer (Thermo Fisher Scientific). The peptides were subjected to NSI source
followed by MS/MS in Q Exactive (Thermo) coupled online to the UPLC. Intact
peptides were detected in the Orbitrap at a resolution of 70,000. Peptides were
selected for MS/MS using NCE setting as 28; ion fragments were detected in the
Orbitrap at a resolution of 17,500. A data-dependent procedure that alternated
between one MS scan followed by 20 MS/MS scans was applied for the top 20
precursor ions above a threshold ion count of 5E3 in the MS survey scan with 10.0 s
dynamic exclusion. The electrospray voltage applied was 2.0 kV. Automatic gain
control was used to prevent overfilling of the Orbitrap; 5E4 ions were accumulated
for generation of MS/MS spectra. For MS scans, the m/z scan range was 350–1,800.
Fixed first mass was set at 100 m/z. The resulting MS/MS data were processed using
the Mascot search engine (v.2.3.0). Tandem mass spectra were searched against
CEP131 (Homo sapiens) database. Trypsin/P was specified as cleavage enzyme
allowing up to four missing cleavages for CEP131. Mass error was set to 10 p.p.m.
for precursor ions and 0.02 Da for fragment ions. Carbamidomethyl on Cys was
specified as fixed modification and oxidation on Met; acetylation on Protein
N-term were specified as variable modifications for CEP131. Specifically, ubiqui-
tination on lysine was set as variable modification for CEP131. Peptide ion score
was set to 420. Finally, two ubiquitination sites were identified in sample CEP131
(the protein coverage is 61.22%). All the detailed information was presented
in Supplementary Fig. 5e.

Immunoprecipitation. Cell lysates were prepared by incubating the cells in NETN
buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.2% Nonidet P-40, 2 mM EDTA)
in the presence of protease inhibitor Cocktails (Roche) for 20 min at 4 �C. This was
followed by centrifugation at 14,000g for 15 min at 4 �C. For immunoprecipitation,
B500 mg of protein was incubated with control or specific antibodies (1–2 mg) for
12 h at 4 �C with constant rotation; 50 ml of 50% protein G magnetic beads
(Invitrogen) was then added and the incubation was continued for an additional
2 h. Beads were then washed five times using the lysis buffer. Between washes,
the beads were collected by magnetic stand (Invitrogen) at 4 �C. The precipitated
proteins were eluted from the beads by re-suspending the beads in 2� SDS–PAGE
loading buffer and boiling for 5 min. The boiled immune complexes were subjected
to SDS–PAGE, followed by immunoblotting with appropriate antibodies.

RNA interference. All siRNA transfections were performed using Lipofectamine
RNAi MAX (Invitrogen) following the manufacturer’s recommendations. The final
concentration of the siRNA molecules is 10 nM and cells were collected 72 or 96 h
later according to the purposes of the experiments. Control siRNA (ON-TAR-
GETplus Non-Targeting Pool, D-001810-10), USP9X siRNA (ON-TARGETplus,
L-006099-00-0005) and CEP131 siRNA (ON-TARGETplus, L-023335-00-0005)
were from Dharmacon in a smart pool manner, while the individual siRNAs
against USP9X (USP9X siRNA-1: 50-GTCGTTACAGCTAGTATTT-30 , USP9X
siRNA-2: 50-CTGTGATTCAGCAACTCTA-30 , USP9X siRNA-3/30UTR:
50-GAGAGTTTATTCACTGTCTTA-30), PCM1 (PCM1 siRNA-1: 50-CCAAT-
GATATTTCTCCGGA-30 , PCM1 siRNA-2: 50-CAGACTTCCCTCCAGGCTA-30),
CDK2 (50-GAGCUUAACCAUCCUAAUA-30), MCL1 (50-GAAATTCTTT-
CACTTCATT-30), ITCH (50-ACATGCCATCTACCGTCATTA-30) and USP33
(50-GAUCAUGUGGCGAAGCAUA-30) were chemically synthesized by
Sigma (Shanghai, China). The short hairpin RNAs (shRNAs) against USP9X and
CEP131 in pLKO vectors were purchased from Sigma.

Real-time RT–PCR. Total cellular RNAs were isolated with TRIzol reagent
(Invitrogen) and used for first strand cDNA synthesis with the Reverse
Transcription System (Roche). Quantitation of all gene transcripts was done by
qPCR using a Power SYBR Green PCR Master Mix (Roche) and an ABI PRISM
7500 sequence detection system (Applied Biosystems) with the expression of
GAPDH or PUM1 as the internal control.

Sequences of shRNAs and primers. Sequences of shRNAs and sequences of
primers used in quantitative PCR are provided in Supplementary Tables 1 and 2,
respectively.
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Lentiviral production. The shRNAs targeting CEP131 and USP9X in the pLKO.5
vector or vectors encoding rtTA, USP9X and CEP131 carrying by pLenti-Neo,
pLenti-Hygro or pLenti-Tight-Puro, as well as three assistant vectors,
pMDLg/pRRE, pRSV-REV and pVSVG, were transiently transfected into
HEK293T cells. Viral supernatants were collected 48 h later, clarified by
filtration and concentrated by ultracentrifugation.

Recombinant protein purification. Recombinant baculovirus carrying deletion
mutants of USP9X was generated with the Bac-to-Bac System (Invitrogen).
Infected Sf9 cells were grown in spinner culture for 48–96 h at 27 �C and
His-tagged proteins were purified using Ni2þ -NTA agarose (Invitrogen) according
to the standard procedures. Full length or deletion mutants of CEP131 were
purified from bacteria BL21 cells with Glutathione-agarose.

In vivo deubiquitination assay. Cells with different treatments were lysed in
RIPA buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% NP-40,
0.1% SDS and protease inhibitor at 4 �C for 30 min with rotation, and centrifuged
at 20,000g for 15 min. About 0.5–1.5 mg of cellular extracts were immunopreci-
pitated with anti-FLAG or anti-Myc agarose affinity gel for 2 h. The beads
were then washed five times with RIPA buffer, boiled in SDS loading buffer
and subjected to SDS–PAGE followed by immunoblotting.

Cell flow cytometry. Cells with different treatments were trypsinized, washed with
PBS and fixed in 70% ethanol at 4 �C overnight. After being washed with PBS,
cells were incubated with RNAase A (Sigma) in PBS for 30 min at 37 �C and
then stained with 50 mg ml� 1 propidium iodide. Cell cycle data were collected
with FACS Calibur (Becton Dickinson) and analysed with the FlowJo software.
Apoptosis of cells was analysed with FACS using Cells Annexin V Apoptosis
Detection Kits as per the manufacturer’s standard procedures (Affymetrix
eBioscience).

Colony formation assay. MCF-7 cells stably expressing USP9X or CEP131 and
shRNAs targeting CEP131 or USP9X were maintained in culture media for
14 days, followed by staining with crystal violet.

Tissue specimens. The samples of carcinomas and the adjacent normal tissues
were obtained from surgical specimens from patients with breast cancer. Samples
were frozen in liquid nitrogen immediately after surgical removal and maintained
at � 80 �C until mRNA and protein extraction. Human breast tissue arrays were
prepared, incubated with antibodies against USP9X, or CEP131, and processed
for immunohistochemistry with standard 3,3’-diaminobenzidine (DAB)-staining
protocols. Representative images for normal (tumour-adjacent normal breast tissue
20), benign (hyperplasia of duct 7, adenosis 13 and fibroadenoma 5) and malignant
(intraductal carcinoma 17, invasive ductal carcinoma 18 and invasive lobular
carcinoma 3) breast tumour samples are collected in three different magnification
fields. All studies were approved by the Ethics Committee of the Tianjin Medical
University, and informed consent was obtained from all patients.

Tumour xenografts. MCF-7 cells were plated and infected in vitro with lenti-
viruses carrying control shRNA, USP9X shRNA or CEP131 shRNA together with
or without FLAG-tagged CEP131 at MOI of 100. Forty-eight hours after infection,
8� 106 viable MCF-7 cells in 200ml PBS were injected into the mammary fat pads
of 6- to 8-week-old athymic mice (BALB/c; Charles River, Beijing, China). Animals
were randomly assigned into five groups (six mice per group). Sample size estimate
was based on xenograft assays from literatures. 17-b-oestradiol (E2) pellets
(0.72 mg per pellet, 60 day release; Innovative Research of America, Sarasota, FL)
were implanted 1 day before the tumour cell injection. Tumours were measured
weekly using a vernier calliper and the volume was calculated according to the
formula: p/6� length�width2. The measurement and data processing were done
with blinding. For immunofluorescent assays with xenograft tumours, the frozen
tumours were cut into pieces followed by trypsinization. Then, the cultured tumour
cells were further enriched by puromycin selection (puromycin-resistant gene
together with shRNA cassette carried by the shRNA-expressing lentivirus has been
integrated into the genome of tumour cells). All animals were killed at the end of
the experiment and included into the analysis. The study was approved by the
Animal Care Committee of Tianjin Medical University.

Statistical analysis. Data from biological triplicate experiments are presented
with error bar as mean±s.d. Two-tailed unpaired Student’s t-test was used for
comparing two groups of data. Analysis of variance in conjugation with
Bonferroni’s correction was used to compare multiple groups of data. All of
the statistical testing results were determined by the SPSS 19.0 software. Before
statistical analysis, variation within each group of data and the assumptions
of the tests were checked.

Data availability. Datasets of ‘‘Richardson breast 2’’, ‘‘Ma breast 4’’,
‘‘Finak breast’’, and ‘‘Turashvili breast’’ from Oncomine database
(https://www.oncomine.com) were used to analyse differential expression of
USP9X in breast cancer and normal breast tissues. All other remaining data are
available within the Article and its Supplementary Files, or available from the
authors upon request.
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