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FOXA1, a member of the forkhead family of winged-helix transcrip-
tion factors, is implicated in the formation of endodermal tissues 
and reproductive organogenesis, including that of liver, pancreas, 
lung, prostate, and mammary gland1–3. It has been proposed that 
the members of the FOXA family occupy distal regulatory enhancers 
to establish chromatin competency for subsequent recruitment of 
collaborating transcription factors, instead of promoting immedi-
ate transcriptional activation4–6. This exceptional property has led 
to the proposal that FOXA family members act as pioneer transcrip-
tion factors4,7. This paradigm is exemplified by a panel of hepatic 
nuclear factors and has been extended to transcriptional coopera-
tion between different transcription factors such as FOXA1 and sex 
hormone receptors, including estrogen and androgen receptors 
(ER and AR)8,9. Consistently, FOXA1 has been shown to act as a 
reprogramming factor, either facilitating or restricting AR bind-
ing to structurally and functionally distinct classes of enhancers in 
prostate cancer cells10 and driving the evolution of prostate cancer 
from an androgen-dependent to an androgen-independent state11. In 
addition, an enhanceosome composed of ER, FOXA1, and GATA3 
was found to be sufficient to restore estrogen responsiveness in  
ER− breast cancer cells12.

The exact molecular mechanisms underlying these extraordi-
nary functions of FOXA1 are still not fully understood. The concept 
that FOXA1 could open a compacted nucleosome when targeted to 
silent chromatin was based on, at least partially, the structural simi-
larity between the FOXA1 forkhead domain and histone linker H1  
(refs. 13–15). Moreover, investigations on lineage-specific occupancy  

of FOXA1 in discrete genomic regions highlighted the impor-
tance of the histone modification marks mono- and dimethylation 
of histone H3 at lysine 4 (H3K4me1 and H3K4me2) in demarcat-
ing FOXA1 regulatory regions8. Intriguingly, a genome-wide DNA 
methylation profile showed that the recruitment of FOXA1 to 
enhancers is favored in hypomethylated regions16, and unbiased 
screening for proteins binding methylated DNA suggested preferen-
tial binding of FOXA1 to methylated CpG dinucleotides17, hinting 
at a potential role for forkhead proteins in the regulation of DNA  
methylation dynamics.

Cytosine methylation (resulting in 5-methylcytosine, or 5mC) is 
a key covalent chemical modification of DNA with the potential to 
modulate transmissible chromatin architecture and function across 
the genome18. Although DNA methylation was initially believed to 
confer stable, long-term silencing, it is now clear that this modifica-
tion is also reversible19,20. However, in comparison to the regulation 
of histone methylation, the mechanisms controlling the plasticity of 
DNA methylation are more complicated, as active DNA demethyla-
tion by direct removal of a methyl group is not likely to occur owing 
to the thermally unfavorability of breaking the carbon–carbon bond. 
Instead, evidence from Arabidopsis thaliana supports an indirect route 
in which the DEMETER family of DNA glycosylases recognizes and 
excises 5mC followed by base-excision repair (BER) to complete active 
demethylation21. Although a counterpart for DEMETER glycosylases 
in mammals remains elusive, the characterization of ten–eleven trans-
location (TET) family proteins as 5mC oxidases, which are able to 
hydroxylate 5mC to 5-hydroxylmethylcytosine and its derivatives  
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5-formylcytosine and 5-carboxylcytosine, provides major insight  
into active DNA demethylation in mammals19. Another alternative 
pathway of DNA demethylation involves deamination of 5mC to 
thymine, achieved by activation-induced deaminase (AID) or apoli-
poprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) 
family proteins22,23. Chemically, 5mC editing by either oxidation or 
deamination generates substrates that are more efficiently modified 
by DNA glycosylation24,25. Regardless of the ways by which cytosine  
is modified, there is evidence supporting the notion that the DNA 
repair pathway is an integral component of DNA demethylation 
machinery23,26,27. In effect, DNA glycosylases/lysases recognize 
damaged or mismatched base pairs and cleave the N-glycosylic bond 
between the target base and the sugar–phosphate backbone of DNA to 
produce apurinic or apyrimidinic (AP) sites28,29. These sites are then 
resolved by the BER pathway through successive reactions catalyzed 
by AP endonuclease, POLB, and DNA ligase III (LIG3) to replenish  
the AP site30. Therefore, active DNA demethylation requires the 
enlistment of DNA repair factors, especially the BER complex, to 
replace methylated cytosine.

We sought to explore in this study the mechanistic role of FOXA1 
in transcription pioneering and epigenetic reprogramming. We found 
that the FOXA1 interactome includes a collection of proteins that are 
involved in the double- and single-strand DNA break repair (DSBR 
and SSBR) pathways. Genome mapping and functional studies indi-
cate that the FOXA1-associated DNA repair complex is implicated 
in active DNA demethylation.

RESULTS
FOXA1 is associated with DNA repair factors
To gain molecular insights into the epigenetic reprogramming and 
pioneering functions of FOXA1, we used epitope-based proteomic 
screening combined with immunopurification and mass spectrom-
etry to identify proteins that are associated with FOXA1. In these 
experiments, FOXA1-containing protein complexes were affinity  
purified from nuclear extracts of HeLa cells stably expressing 
FLAG-FOXA1 with an antibody to FLAG that was immobilized 
on agarose beads. The purified protein complexes were resolved by 
SDS–PAGE and silver stained. The experiment was repeated three 
times with different washing strengths, allowing capture of the 
purified proteins with high reproducibility. Subsequent mass spec-
trometry identified a number of proteins that were associated with 
FOXA1 (Fig. 1a and Table 1). These included ATP-dependent DNA 
helicase 2 subunits 1 and 2 (Ku80 and Ku70), the DNA-dependent 
protein kinase catalytic subunit (DNA-PKcs), and DNA ligase IV 
(LIG4), all of which are components of the DSBR complex31–33, 
and LIG3, POLB, and X-ray repair cross-complementing protein 
1 (XRCC1), all of which are subunits of the SSBR complex30,34,35, 
as well as poly(ADP-ribose) polymerase 1 (PARP1), a factor  
implicated in both the DSBR and SSBR complexes36. In addition, 
topoisomerase IIβ (TOPIIβ) was also identified as a FOXA1- 
associated protein. The detailed results from mass spectrometry 

are provided in Supplementary Table 1. The presence of DSBR 
and SSBR complex components in the FOXA1-contaning complex 
was confirmed by immunoblotting of the iterative eluates from 
FLAG M2 resin with antibodies against these DNA repair proteins  
(Fig. 1b and Supplementary Fig. 1).

Characterization of the endogenous FOXA1 DNA repair complex
We then validated the association of FOXA1 with DSBR and SSBR 
factors through traditional coimmunoprecipitation experiments per-
formed in human mammary carcinoma MCF-7 cells and prostate 
carcinoma LNCaP cells. Immunoprecipitation with antibody against 
FOXA1 followed by immunoblotting with antibody against Ku80, 
Ku70, PARP1, XRCC1, LIG3, or POLB demonstrated that all these 
proteins were indeed efficiently coimmunoprecipitated with FOXA1 
(Fig. 2a). Coimmunoprecipitation with antibody against the SSBR 
protein XRCC1 showed that XRCC1 was not only coimmunopre-
cipitated with the SSBR proteins LIG3 and POLB but also was also 
coimmunoprecipitated with the DSBR proteins Ku80 and Ku70, as 
well as PARP1 and FOXA1 (Fig. 2a). However, although LIG4 and 
DNA-PKcs were identified in the immunopurification experiments 
in HeLa cells, these two proteins were not coimmunoprecipitated 
with FOXA1 or XRCC1 in MCF-7 and LNCaP cells, whereas they 
efficiently coimmunoprecipitated with Ku80 in these cells (Fig. 2a). 
Whether the discrepancies correspond to the existence of cell-lineage-
specific FOXA1-associated complexes in vivo or reflect the regulatory 
(rather than constitutive) nature of LIG4 and DNA-PKcs in the DSBR 
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Figure 1  Identification of FOXA1-associated proteins. (a) Immunoaffinity 
purification of FOXA1-containing protein complexes. Cellular extracts 
from HeLa cells stably expressing FLAG (control) or FLAG-FOXA1 were 
immunopurified with FLAG M2 resin and eluted with FLAG peptide. 
Eluted materials were resolved by SDS–PAGE and silver stained. Protein 
bands were retrieved and analyzed by mass spectrometry. Detailed results 
from the mass spectrometry analysis are provided in Supplementary 
Table 1. The experiment was repeated three times; results are shown for 
two experiments. MW, molecular weight. (b) Immunoblot analysis of the 
purified fractions using antibodies against the indicated proteins.
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complex is currently unknown. Nevertheless, these experiments  
support our observation that FOXA1 is associated with the compo-
nents of the DSBR and SSBR complexes.

We next analyzed the co-purification pattern of the endogenous 
FOXA1 DNA repair complex by size-exclusion chromatography.  
For this purpose, nuclear extracts from MCF-7 cells were applied 
to gel filtration columns and separated by fast protein liquid  

Table 1  List of FOXA1-associated proteins identified by mass 
spectrometry

Protein 
symbol Hits

Coverage (%) Approximate  
MW (kDa) Activity

Biological 
processMass Sequence

DNA-PKcs 69 27.3 27.3 300–500 Ser/Thr kinase DSBR

PARP1 22 38.2 38.1 100–130 Poly(ADP-ribose)  
  polymerase

DSBR, SSBR

TOPIIβ 3 2.6 2.5 90–130 DNA  
  topoisomerase

Topoisomerase

LIG3 5 7.5 7.2 90–130 DNA ligase SSBR

LIG4 3 6.3 6.4 90–130 DNA ligase DSBR

Ku80 39 57.7 56.8 80–100 DNA helicase DSBR

Ku70 27 66.8 66.5 70–90 DNA helicase DSBR

XRCC1 4 11.8 12.0 70–90 Scaffold of SSBR SSBR

POLB 3 14.0 13.7 30–50 DNA polymerase SSBR

chromatography (FPLC). Immunoblotting analysis of the chroma-
tography fractions showed that FOXA1 under native conditions 
eluted with an apparent molecular mass much greater than that of 
the monomeric protein. Notably, the chromatography profile of 
FOXA1 largely overlapped with those of the DSBR proteins Ku80 and 
Ku70, the SSBR proteins XRCC1 and LIG3, and PARP1, and partially  
overlapped with the profile for POLB (Fig. 2b). The chromatogra-
phy profile of DNA-PKcs appeared not to overlap with the profile of 
FOXA1 in MCF-7 cells.

To further investigate the endogenous FOXA1 DNA repair complex, 
gel filtration chromatography was performed with MCF-7 nuclear pro-
teins captured by FOXA1-specific antibody as the starting material, 
allowing a more definitive estimation of the molecular composition of 
the FOXA1-associated protein complex. Consistent with the results of 
size-exclusion chromatography of total nuclear extracts, gel filtration  
chromatography of the purified FOXA1 complex demonstrated 
that Ku80, Ku70, PARP1, XRCC1, LIG3, and POLB were all asso-
ciated with FOXA1, whereas LIG4, DNA-PKcs, and TOPIIβ were 
not identified in the protein complex purified with antibody  
to FOXA1 (Fig. 2c).

As both FOXA1 and DNA repair factors act in the context of chro-
matin DNA, we then analyzed the binding of the FOXA1 DNA repair 
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Figure 2  Characterization of endogenous FOXA1 DNA repair complex. (a) Whole-cell  
lysates from the indicated cell lines were immunoprecipitated with antibodies against  
the indicated proteins followed by immunoblotting. (b) Co-fractionation of FOXA1 and  
DNA repair factors by FPLC. Nuclear extracts from MCF-7 cells were fractionated on  
Superdex 200 size-exclusion columns. The chromatography elution profiles and immunoblotting analysis of the chromatography fractions are shown.  
The elution positions of calibration proteins with known molecular masses are indicated at the top. (c) Co-fractionation of the endogenous FOXA1 DNA repair 
complex by FPLC. MCF-7 nuclear proteins captured by antibody specific to FOXA1 were used as the starting material. The homogeneity of the FOXA1 complex 
and the elution positions of calibration proteins with known molecular masses are indicated at the top. The red boxes in b and c highlight the overlapping 
fractions for components of the FOXA1 DNA repair complex. mAU, milli absorption units. (d) Co-occupancy of FOXA1-binding sites by components of the 
FOXA1 DNA repair complex. qChIP assays were performed to determine the binding pattern of individual components of the FOXA1 complex using antibodies 
against the indicated proteins. Data are displayed as means ± s.d. for triplicate experiments (*P < 0.01, one-way ANOVA). pro, promoter; enh, enhancer. 
Control 1, a region ~5 kb upstream of the TFF1 transcriptional start site; control 2, a coding region of GREB1; control 3, a coding region of NRIP1.
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complex at the ER target genes TFF1 (pS2), NRIP1, PGR, and DSCAM 
using a chromatin immunoprecipitation assay coupled with quantita-
tive real-time PCR (qChIP). In support of the finding that FOXA1 
and subsets of DNA repair factors were physically associated, FOXA1, 
Ku80, Ku70, PARP1, XRCC1, LIG3, and POLB were all detected on 
the regulatory regions of these genes in MCF-7 cells, whereas none of 
these proteins were detected on control regions (Fig. 2d).

Hierarchical architecture of the FOXA1 DNA repair complex
To investigate the molecular details involved in the interaction 
of FOXA1 with DSBR and SSBR proteins, we performed in vitro 
reconstitution and glutathione S-transferase (GST) pulldown 
experiments with FOXA1 purified from Spodoptera frugiperda 
(Sf9) cells and POLB, LIG3, and XRCC1 purified from Escherichia 
coli. POLB, LIG3, and XRCC1 were first incubated together to 
form the SSBR complex in vitro34 and were then applied to FLAG-
FOXA1 conjugated to FLAG M2 resin. After extensive washing, the 
resulting materials were analyzed by immunoblotting. The results 
showed that the SSBR complex was able to bind FOXA1 (Fig. 3a). 
Reconstitution assays in the individual absence of POLB, LIG3, or 

XRCC1 further showed that POLB was indispensable for associa-
tion of the SSBR complex with FOXA1 in vitro (Fig. 3b), suggesting  
that FOXA1 interacts with this complex through POLB. This 
notion was strengthened by reciprocal in vitro pulldown experi-
ments that showed a direct interaction between FOXA1 and POLB  
(Fig. 3c–e). In addition, GST pulldown assays with GST-tagged 
FOXA1 mutants in which the N terminus, DNA-binding domain 
(DBD), or C terminus was deleted (∆N, ∆DBD, and ∆C, respec-
tively) and bacterially purified POLB indicated that the DBD 
domain, but not the N terminus or C terminus, was required for 
the interaction of FOXA1 with POLB (Fig. 3f and Supplementary 
Fig. 2a). Consistently, GST pulldown assays with the FOXA1 N 
terminus, DBD, or C terminus and POLB supported the idea that 
FOXA1 directly interacts with POLB through its DBD domain  
(Fig. 3f). Although we were unable to perform in vitro reconstitu-
tion assays for DSBR proteins because of difficulties in purifying 
them, GST pulldown assays with bacterially purified GST-FOXA1 
and PARP1, Ku80, or Ku70 protein that was transcribed and trans-
lated in vitro showed that FOXA1 could interact directly with 
PARP1 but not with Ku80 or Ku70 (Fig. 3g).
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Figure 4  Genomic landscape of the FOXA1 DNA repair complex. (a) Heat map showing ChIP-seq read density (log2 transformed) for the indicated 
proteins at equivalent genomic regions in 10-kb windows centered on FOXA1-binding sites. The 31,814 regions are sorted by density of FOXA1 signal. 
The “POLB (siFOXA1)” data set was generated by POLB ChIP-seq in MCF-7 cells transfected with siRNA against FOXA1. (b) Average ChIP-seq read 
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the called peaks (200 bp) whose sequences served as PCR template for the results in d. (d) Sequential ChIP (ChIP/re-ChIP) analysis was performed to 
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As FOXA1 is the only component in the FOXA1 DNA repair com-
plex with a specific DNA-binding domain, it is reasonable to hypoth-
esize that the chromatin targeting of this complex is dependent on 

FOXA1. Indeed, binding of Ku80, Ku70, XRCC1, LIG3, and POLB was 
significantly reduced at FOXA1 target sites upon FOXA1 knockdown 
by small interfering RNA (siRNA), as determined by qChIP assays 
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(Fig. 3h). Intriguingly, however, PARP1 binding was unchanged, 
suggesting that PARP1 might act upstream of FOXA1. We thus  
performed qChIP in PARP1-depleted MCF-7 cells and found that  
knockdown of PARP1 resulted in loss of FOXA1 binding (Fig. 3i), whereas  
it had no effect on FOXA1 expression levels (Supplementary  
Figs. 2 and 3). Moreover, qChIP assays in MCF-7 cells indicated  
that binding of FOXA1 was not altered by inhibition of the poly(ADP-
ribose) polymerase function of PARP1 through addition of the 
inhibitor 3-aminobenzamide (3AB)36–38 (Fig. 3i), suggesting that 
the association between FOXA1 and PARP1 is independent of the 
enzymatic activity of PARP1.

Genomic landscape of the FOXA1 DNA repair complex
Considering the critical function of POLB in the BER pathway and 
also its direct interaction with FOXA1 in the complex, we analyzed 
FOXA1 and POLB binding events on a genome-wide scale by ChIP-seq 
in MCF-7 cells and identified a total of 31,814 binding sites (Fig. 4a)  
for these proteins using MACS software39. We observed strong 
intensity for FOXA1 binding events across all its binding sites, with 
corresponding global co-enrichment of POLB binding, which had 
evident but weaker signal (Fig. 4a,b). To test the possibility that 
the FOXA1 DNA repair complex has different binding patterns in 
distinct chromatin environments, we partitioned the epigenome 
of MCF-7 cells (Supplementary Figs. 4 and 5) into seven states by 
ChromHMM40 using published profiling data on six representative 
chromatin marks41. Although the FOXA1 complex showed prominent 
enrichment on active chromatin fractions, there were no discern-
ible binding preferences for either FOXA1 or POLB with respect to 
the seven ChromHMM chromatin states (Supplementary Fig. 4).  
Notably, with ChIP-seq using antibody to POLB in FOXA1-depleted 
cells, we demonstrated the dependence of POLB on FOXA1 for its 
recruitment to chromatin. Although FOXA1 depletion in MCF-7 cells 
had no effect on the protein levels of DNA repair complex compo-
nents (Supplementary Fig. 3), global enrichment of POLB binding 
was substantially decreased in these cells in comparison to control 
cells (Fig. 4a,b). Sequential ChIP (ChIP/re-ChIP) assays, using anti-
body to either FOXA1 or POLB in the first immunoprecipitation 
followed by another pulldown with the other antibody, were used 
to investigate the binding patterns of these proteins at two binding 
sites for the FOXA1 complex (Fig. 4c). The results demonstrated co-
enrichment of these proteins on the same elements but not on control 
sites (Fig. 4d and Supplementary Fig. 6).

DNA methylation dynamics following FOXA1 depletion
We next investigated the functional relevance of the physical asso-
ciation of FOXA1 with DNA repair proteins. As stated above, active 
DNA demethylation requires the participation of DNA damage repair 
pathways, regardless of the distinctive nature of 5mC conversion19.  

To test whether the FOXA1 DNA repair complex is functionally linked 
to the regulation of DNA methylation at FOXA1-bound regions, we 
performed whole-genome bisulfite sequencing (BS-seq)42 in MCF-7 
cells (Fig. 5). We obtained methylomes at single-base resolution in two 
replicates with a combined total of 886 million mapped reads (100-bp 
paired-end reads). We found that the entire set of FOXA1-binding 
sites was associated with a prominent low level of DNA methylation 
(Fig. 5a and Supplementary Fig. 7). A simple explanation for this 
observation might be that the FOXA1 binding motif disfavors CpG 
dinucleotides (Fig. 6b). However, lineage-specific analysis showed 
that DNA methylation levels at FOXA1-binding sites that were either 
MCF-7 specific or shared by both MCF-7 and hepatocellular HepG2 
(ref. 41) cells were much lower than those at sites unique for HepG2 
cells (Fig. 5b and Supplementary Fig. 8), arguing against the simple 
explanation.

We then performed loss-of-function experiments in which 
we knocked down the expression of FOXA1 and probed DNA 
methylome changes using two high-coverage replicates assessed at  
single-base resolution (868 million mapped reads). Concomitantly, 
we refined the binding information for the FOXA1 complex to 
higher resolution by intersecting our data with ChIP–exonuclease 
results for FOXA1 in the same cell line43. We first determined the 
physical ranges with significant methylation changes after FOXA1 
removal, which we identified by comparing the distribution of 
the most hypermethylated CpG dinucleotide within ±5 kb of a 
FOXA1 binding summit to the distribution in the background 
model (Fig. 5c). The results indicated that short windows of  
±500 bp with respect to peak centers showed significant changes 
more than 3 s.d. from the mean distribution in null models). 
Thus, the downstream analysis was performed with methylation 
data on these 1-kb windows.

To investigate methylation changes for the total of 32,683 refined 
FOXA1 peaks, we employed a stepdown strategy with an initial coarse 
classification step using the k-means clustering method with k set to 3. 
This analysis indicated that two large sets with 3,845 (cluster II) and 
3,457 (cluster III) sites showed asymmetrically increased methylation 
on either side of the FOXA1 summit, with the increased methylation 
constrained to a short patch and displaying a striking coincidence with 
the distribution of CpG dinucleotide content, whereas the remaining 
25,381 sites in cluster I showed weak but centralized hypermethylation 
(Fig. 5d). Indeed, pairwise comparisons supported a reproducible and 
localized pattern of hypermethylation in these clusters (P < 2.2 × 10−308,  
one-tailed t test; Fig. 5e and Supplementary Fig. 9). For the  
majority of cluster I sites, because of the lack of precise FOXA1 bind-
ing information at single-base resolution and also because of CpG  
distribution, simple aggregation statistics to quantify CpG  
methylation signals might conceal the significance of methylation 
changes in short stretches of CpG dinucleotides as a result of the 

Figure 5  DNA methylation dynamics after FOXA1 depletion. (a) Heat map showing 5mC abundance along 10-kb windows centered on FOXA1-binding 
sites. (b) Average 5mC abundance for FOXA1-binding sites unique to MCF-7 or HepG2 cells, or present in both (common), and a set of random genomic 
intervals (control). (c) By considering methylation changes at single-base resolution after FOXA1 depletion, we calculated the distribution of the most 
hypermethylated CpG dinucleotides within ±5 kb of refined FOXA1 binding summits43 and the distribution of these CpG sites in the background 
model. Lines corresponding to mean random density and ±3 s.d. from mean values are shown. µ, mean; σ, s.d. (d) Average changes in 5mC abundance 
with FOXA1 depletion (top) and average number of CpG dinucleotides (bottom) in the three clusters identified by k-means clustering. (e) Scatterplots 
showing mean 5mC abundance in the 350-bp window to the left of the FOXA1-binding site for sites in cluster II or the 350-bp window to the right 
of the FOXA1-binding site in sites from cluster III. rep., replicate. (f) The box plots show 5mC abundance within the 200-bp window centered on the 
LCH midpoint in the five subgroups from cluster I. *P < 1.0 × 10−5, **P < 1.0 × 10−100, ***P < 1.0 × 10−200, t test. (g) Average 5mC abundance 
for 15 CpG dinucleotides aligned with respect to the center of the LCH. (h,i) The differential association of epigenetic marks with each subgroup is 
demonstrated using pie charts of the seven ChromHMM epigenomic states (Supplementary Fig. 4) (h) or a heat map of z scores for enrichment of 
epigenetic marks against null models (i). (j) The box plots show FOXA1 binding intensity (left) or changes in POLB binding following FOXA1 depletion 
(right) for each subgroup. P values were calculated by t test. For the box plots in f and j, each box is the interquartile range and the line is the median.
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sequence-specific binding and confined influences of FOXA1. Therefore, 
we calculated the number of CpG dinucleotides within the longest 
consecutively hypermethylated (LCH) CpG stretch along each 1-kb  

window and stratified cluster I sites into five subgroups on the basis 
of this value (Supplementary Fig. 10a), reasoning that sites with 
longer stretches of consistently hypermethylated CpGs upon FOXA1 
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Figure 6  FOXA1 overexpression evokes POLB-dependent demethylation. (a) A set of genomic regions was selected on the basis of each region having 
high basal CpG methylation levels and high affinity for FOXA1 in MDA-MB-231 cells, according to previous chromosome-wide MeDIP on-chip data16.  
A schematic of ChIP on-chip MAT score55 tracks at two representative sites (shaded boxes) is shown. (b) DNA methylation analysis by bisulfite 
sequencing of cloned PCR products. Top, BSP results for MDA-MB-231 cells infected with empty vector or overexpressing FOXA1 are shown as open 
or closed circles representing unmethylated and methylated CpGs, respectively. The red boxes highlight the closest CpG dinucleotides to the FOXA1 
binding motif. Bottom left, signatures of FOXA1-associated DNA demethylation are listed. Bottom right, the motif used to predict FOXA1-binding 
sites in demethylated regions was retrieved from the JASPAR database. (c) qChIP analysis was performed in MDA-MB-231 cells infected with control 
lentivirus or lentivirus encoding FOXA1 cDNA, using antibody against FOXA1 or POLB to detect enrichment at the indicated regions. Data are  
displayed as means ± s.d. for triplicate experiments (*P < 0.05, t test comparing the results from two conditions). (d) Demethylation was measured  
by MeDIP-coupled quantitative real-time PCR at the indicated regions. MDA-MB-231 cells infected with lentivirus encoding FOXA1 cDNA were  
further challenged by POLB depletion (siPOLB). Left, genomic DNA was prepared and subjected to MeDIP. Data are displayed as means ± s.d. for 
triplicate experiments (*P < 0.01, one-way ANOVA). Right, relative protein expression was examined by immunoblotting.
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depletion would exhibit greater dependency on the FOXA1 DNA 
repair complex to alter the regional epigenetic environment and tran-
scriptional pioneering. The analysis demonstrated that three large 
subgroups with 7,151 (central group III), 4,419 (central group IV),  
and 3,839 (central groups V) sites showed reproducible and signifi-
cant hypermethylation with two, three, and four or more CpGs in 
the LCH, respectively (P < 1.0 × 10−100, one-tailed t test; Fig. 5f,g 
and Supplementary Figs. 10 and 11). Thus, DNA hypermethylation 
following FOXA1 depletion marked localized features (median dif-
ference of ~10–20%) in cluster II and cluster III with flanking hyper-
methylation patterns and the three subgroups from cluster I with 
centralized hypermethylation patterns, summing to ~70% of the total 
FOXA1-binding sites.

Interestingly, by classifying all these groups of sites into interpret-
able epigenetic domains (Supplementary Fig. 4), we found that the 
central subgroups with longer LCHs contained a greater propor-
tion of sites with an active chromatin state and that this pattern was 
most evident in central group V, with four or more CpGs in each 
LCH, whereas sites classified in the subgroups with zero or fewer 
than two hypermethylated CpGs following FOXA1 depletion were 
predominately in a repressed state (Fig. 5h). This observation was 
further confirmed by comparing z scores for enrichment of various 
histone modification marks in the center window of sites from a speci-
fied group to the genomic background (Fig. 5i and Supplementary  
Fig. 12). Notably, although occupancy of FOXA1 was independent of 
DNA methylation changes and exhibited similar enrichment across 
these groups, reduction of POLB binding resulted in a noticeable 

correlation with DNA hypermethylation upon FOXA1 knockdown 
(Fig. 5j), underscoring the importance of the DNA repair pathway in 
FOXA1-asscociated hypomethylation.

FOXA1 overexpression evokes POLB-dependent demethylation
The maintenance of low methylation levels in cells with high endog-
enous levels of FOXA1 might be validated with the initialization of 
DNA demethylation in FOXA1-negative cells through ectopic intro-
duction of FOXA1. To test this possibility, we infected ER− human 
mammary carcinoma MDA-MB-231 cells with lentiviruses carrying 
FOXA1 cDNA. We selected relevant genomic regions for analysis on 
the basis of them having high basal CpG methylation levels and high 
affinity for FOXA1, according to previous chromosome-wide data16 
(Fig. 6 and Supplementary Fig. 13). Using bisulfite sequencing– 
coupled PCR (BSP), we noted that most of the tested regions  
experienced DNA demethylation with a localized feature: demeth-
ylated sites were confined to regions flanking FOXA1-binding  
sites without spreading to neighboring sites, and all regions had sparse 
CpG dinucleotides, differing from the traditional CpG island defini-
tion (Fig. 6a,b). The demethylation was accompanied by physical 
association of FOXA1 and POLB with the tested regions (Fig. 6c).  
The results were also independently validated using methylated 
DNA immunoprecipitation (MeDIP) assays (Fig. 6d). Moreover, the 
dependence of FOXA1-associated demethylation on the DNA repair 
factors nucleated with FOXA1 was further supported by epistasis anal-
ysis examining the DNA methylation pattern under overexpression  
of FOXA1 and knockdown of the key DNA polymerase POLB, which 
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showed that depletion of POLB severely impaired FOXA1-associated 
demethylation at all tested regions (Fig. 6d).

The FOXA1 DNA repair complex in estrogen response
To link FOXA1-associated DNA hypomethylation to a biologically 
relevant response, we analyzed histone acetylation patterns at FOXA1-
binding sites as an indicator of DNA methylation–mediated repressive 
chromatin context in FOXA1 complex–depleted MCF-7 cells. qChIP 
experiments indicated that levels of histone acetylation were signifi-
cantly reduced at all the tested FOXA1-binding sites upon knockdown 
of FOXA1 or POLB (Fig. 7a and Supplementary Fig. 14).

We next tested the dependence of genomic binding of ERα on 
FOXA1-associated DNA methylation in MCF-7 cells. We analyzed 
estrogen-induced ERα recruitment and FOXA1-depletion-associated 
ERα unloading in the seven groups of FOXA1-binding sites showing 
different hypermethylation patterns (Fig. 5) using previous genome-
wide data9. Interestingly, the central groups with no or single CpG 
sites in their LCHs had weak ERα engagement after estrogen stimula-
tion and also negligible ERα unloading when FOXA1 was depleted 
(Fig. 7b). Robust FOXA1-dependent ERα loading was detected in 
central groups with longer LCHs and in the two clusters with flanking 
hypermethylation patterns, a trend that was maximized in the group 
with the most extensively affected hypermethylation ranges (Fig. 7b). 
We further annotated the genes associated with different subgroups 
through GREAT44 and noted the significant number of biological 
processes, especially estrogen-related pathways, in the groups with 
longer LCHs (Supplementary Tables 2 and 3).

To directly test the functional relevance of the FOXA1 DNA repair 
complex in estrogen-triggered transcription, we knocked down the 
key components of the DSBR and SSBR complexes in MCF-7 cells and 
measured the expression of the ER target genes TFF1, XBP1, NRIP1, 
and DSCAM. Depletion of any of the tested components severely 
affected FOXA1-dependent transcription of ER target genes (Fig. 7c).  
We further demonstrated the causal role of FOXA1 and POLB in 
DNA demethylation using methylation-sensitive restriction enzymes, 
finding that DNA hypermethylation after FOXA1 or POLB knock-
down occurred at a critical CpG site in the TFF1 promoter (Fig. 7d). 
By using an experimental system in MDA-MB-231 cells12, we also 
demonstrated the need for FOXA1 and POLB in DNA demethylation, 
ERα recruitment, and the ‘reprogramming’ of estrogen responsive-
ness (Supplementary Fig. 15).

DISCUSSION
The winged-helix transcription factor FOXA1 has been implicated 
in both epigenetic reprogramming and pioneering competency7. 
However, although the number of proteins with pioneering potential 
has expanded greatly since the original findings of a panel of hepatic 
nuclear factors, there is a lack of proportionate mechanistic insight 
into the enigmatic activity of pioneering competency, especially given 
the structural diversity of newly identified pioneer factors lacking 
the histone H1–like winged-helix domain45–47. To address this need, 
we characterized the FOXA1 interactome in HeLa cells by a pro-
teomic approach to identify proteins that are potentially associated 
with FOXA1. Unexpectedly, we found that FOXA1 is associated with 
a number of proteins that are components of SSBR and DSBR DNA 
repair complexes.

We identified seven core components in the FOXA1-containing 
complex, including Ku80, Ku70, PARP1, POLB, LIG3, and XRCC1. 
Although this multiple-subunit complex cannot be assigned as a sta-
ble stoichiometric complex because of the incomplete overlap of the 
fractionation profiles of FOXA1 and DNA repair factors, it adheres 

to the principle of transient regulatory complex–complex interaction 
networks48. This assignment is logical because DNA repair factories 
would be otherwise restricted and less accessible to detect haphazard 
damage if stably associated with a sequence-specific DNA-binding  
factor, and it is also biologically meaningful to allow the dispatch of 
limited sets of DNA repair proteins to different missions. Indeed,  
functionally, we found that gain of function of FOXA1 is associated with 
active removal of DNA methylation, and loss of function of FOXA1 
was accompanied by DNA hypermethylation. Mechanistically, we  
showed that FOXA1-associated DNA demethylation occurs in both 
a FOXA1-dependent and DNA-repair-factor-dependent manner and 
exhibits a sequence-specific pattern, differing from TET-catalyzed  
5mC oxidation, which seems to occur on general sets of regulatory ele-
ments without apparent specification of unique DNA sequences27,49. 
However, it would not be surprising if the FOXA1-nucleated machin-
ery and the TET system intersect at certain levels. This possibility 
clearly warrants future investigations, especially because we were 
unable to identify enzymes in the FOXA1 DNA repair complex that 
are required to catalyze chemical reactions during DNA demethylation.  
Moreover, clarification of this point also depends on identification  
of the glycosylase(s) used in the demethylation system, which,  
unfortunately, generally do not co-purify with repair proteins, as the 
interactome of thymine DNA glycosylase (TDG) does not contain  
substantial levels of DNA repair factors50.

Despite the lack of a unifying mechanistic model to reconcile  
the findings of active DNA demethylation across different species, 
a consensus scheme is emerging in which DNA repair factors seem 
obligatory for active DNA demethylation19,23,24,26,51. It is increasingly 
clear that DNA repair is not restricted to maintenance of genomic 
integrity in response to environmentally inflicted lesions during 
replication or recombination but that it is in fact at the heart of an 
epigenetic regulatory system. It also seems likely that the DNA repair 
mechanism might have initially been selected as one of the elements 
involved in DNA demethylation and was subsequently coopted to 
fulfill the mission of DNA repair during evolution52. Along with 
the general concept of correlation between DNA hypomethylation  
and transcription factor binding42,53, linking FOXA1 to DNA repair 
factors and to DNA demethylation constitutes an attractive model to 
understand the transcriptional pioneering activity of FOXA1.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. The deep sequencing data reported in this manu-
script have been deposited in the Gene Expression Omnibus under 
accession GSE80808. The mass spectrometry proteomics data have 
been deposited at the ProteomeXchange via the PRIDE54 partner 
repository with data set identifier PXD004271.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Antibodies and reagents. Antibodies to FOXA1 (ab23738), XRCC1 (ab1838), 
POLB (ab3181), LIG3 (ab587), DNA-PKcs (ab1832), LIG4 (ab26039),  
and TOP2β (ab109524) were purchased from Abcam; antibodies to Ku70 
(sc-12729), Ku80 (sc-1485), and PARP1 (sc-56197) were purchased from 
Santa Cruz Biotechnology; and antibody to FLAG (F3165) was purchased 
from Sigma. 17-β-estradiol (E2) was purchased from Sigma and used at a 
100 nM concentration. Transfection with plasmid DNA was performed with 
polyethylenimine (Sigma) or Lipofectamine 2000 (Invitrogen) following the 
manufacturer’s instructions, and Lipofectamine RNAiMAX (Invitrogen) was 
used for transfection with double-stranded siRNA.

Cell lines. The cell lines used were obtained from the American Type Culture 
Collection. MCF-7 and HeLa cells were cultured in DMEM supplemented 
with 10% FBS. Cells were maintained in a humidified incubator equilibrated 
with 5% CO2 at 37 °C. LNCaP cells were cultured in RPMI-1640 medium 
supplemented with 10% FBS and maintained in an incubator with 5% CO2 at 
37 °C. All cell lines were tested negative for mycoplasma.

Small interfering RNA. siRNAs were synthesized by Shanghai GenePharma. 
They were used at a concentration of 20–50 nM. The siRNA targeting 
sequences are listed in Supplementary Table 4.

Immunopurification and mass spectrometry. HeLa cells stably expressing 
FLAG-FOXA1 were lysed in buffer A (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 
0.5% NP-40, 50 mM sodium fluoride, 1 mM DTT, 0.5% sodium deoxycholate, 
and 1 mM phenylmethylsulfonyl fluoride (PMSF) plus protease inhibitors 
(Roche)), and lysates were incubated with anti-FLAG M2 beads (Sigma) for 2 h  
at 4 °C. After washing three times with buffer B (50 mM Tris-HCl, pH 8.0, 
150 mM NaCl, and 0.5% NP-40), FLAG peptide (Sigma) was used to elute the 
protein complex from the beads following the manufacturer’s instructions. The 
eluted protein complex was then collected and resolved by SDS–PAGE, silver 
stained, and subjected to liquid chromatography/tandem mass spectrometry 
for sequencing and data analysis. The peptide sequences identified are shown 
in Supplementary Table 1.

FPLC chromatography. MCF-7 nuclear extracts were prepared, dialyzed 
against buffer C (20 mM HEPES, pH 8.0, 10% glycerol, 0.1 mM EDTA, and 
150 mM NaCl) and then applied to a Superdex 200 column (GE Healthcare) 
that had been equilibrated with buffer C and calibrated with protein standards. 
The column was eluted at a flow rate of 0.5 ml/min, and fractions were col-
lected. Alternatively, complex containing endogenous FOXA1 was prepared 
and subjected to size-exclusion chromatography. In this case, the FOXA1 
complex was first enriched by antibody-mediated affinity purification (using 
antibody to FOXA1; ab23738, Abcam) from MCF-7 nuclear extracts. After 
three extensive washes with buffer B, the protein complex was competitively 
eluted with a synthesized FOXA1 peptide (IEPSALEPAYYQGVYSRPVLNTS; 
MBL), which was the immunogen used to generate the ab23738 antibody to 
FOXA1. The eluates were then fractionated on a Superdex 200 column.

Immunoprecipitation and immunoblotting. Immunoprecipitation was 
performed with MCF-7 or LNCaP cellular extract and 2 µg of antibody in a 
final volume of 500 µl in buffer A. After incubation overnight at 4 °C under 
constant rotation, 50 µl of 50% protein G beads was added and the mixture 
was incubated for two more hours. Beads were precipitated by centrifugation 
(5 min at 500g) and were extensively washed five times with buffer A. Washed 
beads were mixed with 2× SDS–PAGE loading buffer, and samples were ana-
lyzed immunoblotting. Immunodetection was performed using enhanced 
chemiluminescence (ECL System, Amersham Biosciences) according to the 
manufacturer’s instructions.

In vitro reconstitution and pulldown assays. FLAG-tagged FOXA1, Ku70, 
Ku80, and PARP1 expression plasmids were generated by inserting the cor-
responding cDNAs into pcDNA3.1(+) vector. Plasmids for GST-FOXA1 
and the GST-tagged FOXA1 mutants (∆N, ∆DBD, ∆C, Nt, DBD, and Ct) 
were generated by subcloning from the pcDNA3.1(+) vectors encoding 

FLAG-tagged FOXA1. PET28a vectors encoding LIG3, POLB, and XRCC1 
were generously provided by J.L. Parsons (University of Liverpool) and  
K. Caldecott (University of Sussex). GST fusion proteins and His-tagged 
proteins were expressed in E. coli strain BL21 and purified with Glutathione 
Sepharose 4B beads (GE Healthcare) and Ni-NTA resin (Qiagen), respec-
tively, according to the manufacturer’s instructions. FLAG-tagged Ku70, Ku80,  
and PARP1 for GST pulldown assays were transcribed and translated in vitro 
(TNT Systems, Promega). For in vitro reconstitution and pulldown assays, 
FLAG, GST, or His fusion proteins were first immobilized on affinity gels 
and then incubated with the proteins purified or transcribed and translated  
in vitro. After extensive washing, the protein complex was eluted with  
SDS–PAGE loading buffer and subjected to immunoblotting.

Baculovirus production. For baculovirus expression, cDNAs encoding 
FOXA1 were inserted into the pFastBac HT A vector (Invitrogen) with a 
sequence encoding a C-terminal FLAG tag for further affinity purification. 
The recombinant baculovirus construct was then transfected into Sf9 cells 
(Invitrogen), and the viruses were generated and amplified according to  
the manufacturer’s protocol. To purify FOXA1 proteins, cells were lysed by 
sonication and incubated with anti-FLAG M2 beads. After washing three  
times with buffer A, FLAG peptide was applied to the beads to elute the 
FOXA1 protein.

ChIP and sequential ChIP. ChIP and sequential ChIP were conducted as 
previously described56–58. Briefly, cells were cross-linked using 1% formalde-
hyde at room temperature for 10 min, lysed, and sonicated on ice. The sheared 
chromatin was precleared, incubated with specific antibodies, and washed with 
low- and high-salt buffers. Then, the DNA was eluted and purified as template 
for PCR. For sequential ChIP, bead eluates from the first immunoprecipitation 
were incubated with 10 mM DTT at 37 °C for 30 min, and the resulting samples 
were diluted 1:50 in dilution buffer (1% Triton X-100, 2 mM EDTA, 150 mM 
NaCl, and 20 mM Tris-HCl, pH 8.1) followed by immunoprecipitation with 
the second antibody. The primer sequences for real-time PCR are provided 
in Supplementary Table 5.

Real-time RT–PCR. Total cellular RNA was extracted with TRIzol reagent 
(Sigma) and used for first-strand cDNA synthesis with the MMLV reverse 
transcription system (Promega). Quantification of all gene transcripts was 
performed on an ABI PRISM 7300 instrument (Applied Biosystems) using 
SYBR Green Master Mix, and RNA levels were normalized to those for 
GAPDH (glyceraldehyde 3-phosphate dehydrogenase). Primers are described 
in Supplementary Table 5.

Lentiviral production and infection. 293T cells were transfected with 
pLenti6/V5-DEST vector (Invitrogen) encoding FOXA1 and three other helper 
plasmids (REV, RRE, and VSVG). Forty-eight hours after transfection, the 
supernatant of transfectants was collected and filtered through a 0.45-µm cel-
lulose acetate filter (Millipore). MDA-MB-231 cells at 20–30% confluence were 
infected with viruses supplemented with 4 µg/ml polybrene (Millipore).

DNA methylation analysis. Bisulfite treatment and sequencing were per-
formed as described59 with minor modifications. Briefly, genomic DNA was 
isolated from MDA-MB-231 cells with SDS treatment and proteinase K diges-
tion followed by phenol-chloroform extraction. One microgram of genomic 
DNA was first denatured with NaOH for 10 min at 42 °C and then treated with 
10 µl of 10 mM hydroquinone and 520 µl of 3 M sodium bisulfite at 50 °C  
overnight. Modified DNA was purified with a QIAquick PCR Purification 
kit (Qiagen) and further incubated with 0.3 N NaOH for 5 min. The result-
ing DNA was purified by phenol-chloroform extraction and dissolved in TE 
buffer (10 mM Tris-HCl and 1 mM EDTA, pH 8.0). PCR was then performed 
with the primers described in Supplementary Table 5, and the products were 
cloned into the pEASY-T1 vector (Transgene) for subsequent sequencing. The 
methylation status of CCGG sites was analyzed through digestion of purified 
DNA with the methylation-sensitive restriction enzyme HpaII or with the 
methylation-insensitive isoschizomer MspI for 2 h at 37 °C. Once purified, 
the digested DNA was subjected to PCR.
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Methylated DNA immunoprecipitation. Genomic DNA from MCF-7 or MDA-
MB-231 cells was prepared by RNase digestion, proteinase K treatment, and 
phenol-chloroform extraction. The DNA was sonicated to produce fragments 
ranging in size from 300 to 1,000 bp, which were then denatured by incubation for  
10 min at 95 °C and subjected to immunoprecipitation with 3 µg of monoclonal 
antibody against 5mC (Eurogentec, BI-MECY-0100). After extensive washes, 
methylated DNA was eluted and further purified through a QIAquick column. 
Quantitative real-time PCR was then performed to measure DNA methylation 
levels using the primers described in Supplementary Table 5.

ChIP-seq and whole-genome bisulfite sequencing. Genomic DNA for ChIP-
seq was prepared as described60. BS-seq was performed as described42 with 
few modifications. For construction of the sequencing library, the DNA was 
fragmented by sonication using a Bioruptor (Diagenode) to a mean size of 
approximately 250 bp, followed by blunt-ending, polyadenylation, and adaptor 
ligation (in the case of methylated adaptors to protect from bisulfite conver-
sion), essentially according to the manufacturer’s instructions. Ligated DNA 
was bisulfite converted using the EZ DNA Methylation-Gold kit (Zymo). 
Fragments corresponding to different insert sizes were excised from the same 
lane of a 2% TAE agarose gel. Products were purified using the QIAquick Gel 
Extraction kit (Qiagen) and amplified by PCR. In-depth whole-genome DNA 
sequencing was performed by the BGI using the Illumina HiSeq 4000 or HiSeq 
2500 platform. Sequencing reads were aligned against the GRCh37 human 
reference genome using Bowtie61.

Bioinformatic analysis. In-depth whole-genome DNA sequencing was per-
formed by BGI. Peaks from ChIP-seq libraries were called using MACS39 with 
default parameters. Cell-lineage-specific FOXA1-binding sites were deter-
mined by BEDOPS62. To obtain normalized read density for ChIP-seq, we 
calculated read coverage at each base and then normalized this value by the 
total number of mappable reads in that library. To refine the FOXA1 binding 
information, we have intersected our ChIP-seq data with ChIP–exonuclease 
results43 and retrieved all short ChIP–exonuclease peaks that overlapped any 
FOXA1 peaks from our experiment by at least one base. A total of 32,683 
ChIP–exonuclease peaks were defined that overlapped with ~85% of the 
FOXA1 ChIP-seq peaks in our data. For BS-seq, reads were first filtered for 
adaptor sequences and contamination, and low-quality reads were removed.  
Then, we mapped the clean reads to the reference genome by BSMAP63, 
removed duplicate reads, and merged the mapping results according to each 
library. Here we calculated the mapping rate and bisulfite conversion rate for 
each sample. Methylation levels were determined by dividing the number of 
reads corresponding to each 5mC site by the total number of reads covering that 
cytosine, which was also equal to the 5mC/C ratio at each reference cytosine64.  
The DNA methylation change at each CpG dinucleotide surrounding  

FOXA1 binding summits was calculated as the difference in CpG levels 
between FOXA1-depleted cells and control cells. LCHs were hence defined as 
the largest set of consecutive CpGs with increased methylation within ±500 bp 
of a FOXA1 peak summit. We used the GenomicRanges package65 in R (ref. 66)  
to handle annotated genomic ranges. We also used R to perform k-means 
clustering and used ggplot2 (ref. 67) to produce heat maps and other statistical 
plots. ChromHMM was used with default parameters40. Enrichment of histone 
marks in each subgroup was calculated as a z score against values from 100 iter-
ations in the background groups with randomly permutated locations serving 
as null models. We also used some published high-throughput sequencing data 
from the Gene Expression Omnibus database and the Encyclopedia of DNA 
Elements (ENCODE)41 for H3K4me3 (GSM945269), H3K9me3 (GSM945857), 
H3K27me3 (GSM970218), H3K36me3 (GSM970217), H3K4me1 (ref. 68) 
(GSM1115994), H3K27ac (GSM945854), and p300 (ref. 69) (GSM1470014); 
ERα data were obtained under the data series accession GSE25710 (ref. 9).

Statistics. Statistical analysis and P-value cutoffs are indicated in the  
relevant figures.
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