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Molecular Determinants for the
Tissue Specificity of SERMs

Yongfeng Shang and Myles Brown*

Selective estrogen receptor modulators (SERMs) mimic estrogen action in cer-
tain tissues while opposing it in others. The therapeutic effectiveness of SERMs
such as tamoxifen and raloxifene in breast cancer depends on their antiestro-
genic activity. In the uterus, however, tamoxifen is estrogenic. Here, we show
that both tamoxifen and raloxifene induce the recruitment of corepressors to
target gene promoters in mammary cells. In endometrial cells, tamoxifen, but
not raloxifene, acts like estrogen by stimulating the recruitment of coactivators
to a subset of genes. The estrogen-like activity of tamoxifen in the uterus
requires a high level of steroid receptor coactivator 1 (SRC-1) expression. Thus
cell type– and promoter-specific differences in coregulator recruitment deter-
mine the cellular response to SERMs.

Tamoxifen and raloxifene are selective estro-
gen receptor modulators (SERMs) that bind
the estrogen receptor (ER) and modulate ER-

mediated gene transcription. Tamoxifen is an
effective treatment for all stages of hormone-
responsive breast cancer and can prevent
breast cancer in high-risk women (1). How-
ever, tamoxifen has partial estrogenic activity
in the uterus and is associated with an in-
creased incidence of endometrial hyperplasia
and cancer. Raloxifene, approved for the pre-
vention and treatment of osteoporosis in post-
menopausal women, also appears to prevent
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breast cancer, but it does not increase the
incidence of endometrial cancer. The Nation-
al Cancer Institute supported “Study of Ta-
moxifen and Raloxifene” (STAR Trial) is
currently being conducted to compare the
safety and effectiveness of these two agents
for the prevention of breast cancer in post-
menopausal women (2).

The molecular mechanism underlying the
tissue-specificity of SERM action is not
clear. The crystal structures of the liganded
ER hormone-binding domain (HBD) indicate
that both tamoxifen and raloxifene can act as
ER antagonists by competing with estradiol
(E2) for binding and by inducing conforma-
tional changes that block the interaction of
ER with coactivator proteins (3, 4). However,
this does not explain how SERMs act as
agonists or the differences in the spectrum of
activity among various SERMs.

Estrogen receptor can regulate gene tran-
scription either by binding directly to the pro-
moter of target genes or by binding indirectly
through a mechanism involving other transcrip-
tion factors such as Sp1 and AP1. Genes regu-
lated through direct ER binding, such as CATD
(encoding cathepsin D) (5) and EBAG9 (encod-
ing ER-binding fragment-associated antigen 9)
(6, 7), typically harbor an estrogen responsive
element (ERE) with a consensus sequence of
59-GGTCAnnnTGACC-39 in their promoters.
Genes regulated by binding ER indirectly in-
clude c-Myc (8) and insulin-like growth factor-I
(IGF-I) (9), whose promoters do not contain a
classical ERE.

We examined transcriptional responses to
tamoxifen and raloxifene in the mammary car-
cinoma cell line MCF-7 and the endometrial
carcinoma cell line Ishikawa. In both cell types,
estradiol (E2) induced the expression of both
the directly bound ER target genes CATD and
EBAG9 and the indirectly bound target genes
c-Myc and IGF-I (Fig. 1). Neither tamoxifen
nor raloxifene stimulated the expression of
CATD or EBAG9 in either MCF-7 or Ishikawa
cells (Fig. 1). It is noteworthy, however, that in
Ishikawa cells, but not in MCF-7 cells, tamox-
ifen, but not raloxifene, induced the expression
c-Myc and IGF-I, whose promoters do not con-
tain a classical ERE. Similar tissue-specific re-
sults were also obtained in another endometrial
carcinoma cell line ECC-1 and another mam-
mary carcinoma cell line T47-D (10). These
observations suggest that promoter context is
one of the determinants for tissue-specific ac-
tivities of tamoxifen.

Estrogen receptor–mediated transcription-
al activation is associated with the recruit-
ment of coactivators, such as AIB1, GRIP1,
SRC-1, CBP, p300, and pCAF, and subse-
quent histone acetylation (11–14). In con-
trast, antagonist-liganded ER is able to recruit
corepressors (15–18). Previously, we showed
in MCF-7 breast cancer cells that, when
bound by tamoxifen, ER recruits the core-

pressors NCoR and SMRT and a subset of
histone deacetylases (HDACs) to target pro-
moters (18). Further examination of the re-
cruitment of ER coregulators to target gene
promoters by chromatin immunoprecipitation
(ChIP) revealed that, in MCF-7 cells as well

as in Ishikawa cells, both tamoxifen and
raloxifene induce the recruitment of corepres-
sors and HDACs to the CATD promoter (Fig.
2A, lower panels). In striking contrast, in
Ishikawa cells, but not in MCF-7 cells, in-
stead of inducing the recruitment of a core-

Fig. 1. Stimulation of c-Myc and
IGF-I expression by tamoxifen only
in endometrial carcinoma cells.
MCF-7 cells (A) or Ishikawa cells
(B) were grown in phenol red–free
Dulbecco’s modified Eagle’s medi-
um (DMEM) supplemented with
5% charcoal-dextran–stripped fe-
tal bovine serum (FBS) for at least
3 days and left untreated or treat-
ed with 100 nM of 17b-estradiol
(E2), 1 mM of 4-hydroxytamoxifen
(tamoxifen), or 1 mM of raloxifene
for different times. Total RNAs
were extracted using TRIzol Re-
agent (Invitrogen Corp., Carlsbad,
CA), and the expression of c-Myc,
IGF-I, EBAG9, or cathepsin D genes
was measured by real-time reverse
transcriptase (RT) polymerase
chain reaction (PCR) using the ABI
PRISM 7700 Sequence Detector
and the TaqMan EZ RT-PCR kit
(Applied Biosystems, Foster City,
CA).

Fig. 2. Coregulator recruitment on ER target gene promoters. MCF-7 cells or Ishikawa cells were
grown in phenol red–free DMEM supplemented with 5% charcoal-dextran–stripped FBS for at least
3 days and left untreated (C) or treated with 100 nM of E2 (E), 1 mM of 4-hydroxytamoxifen ( T),
or 1 mM of raloxifene (R) for 45 min. ChIP assays (18) were performed using specific antibodies
against (A) NCoR, SMRT, and HDAC4; and HDAC2 (Santa Cruz Biotechnology, Santa Cruz, CA); and
(B) ERa (Ab-10, NeoMarkers, Fremont, CA); SRC-1 (a mouse monoclonal); GRIP1 (rabbit poly-
clonal); AIB1 (affinity-purified rabbit polyclonal); CBP (mouse monoclonal AC26); and acetylated
histones (AcH) (Upstate Biotechnology, Lake Placid, NY).

R E P O R T S

29 MARCH 2002 VOL 295 SCIENCE www.sciencemag.org2466



pressor complex, tamoxifen, but not ralox-
ifene, induced the recruitment of a coactiva-
tor complex including SRC-1, AIB1, and
CBP to the c-Myc promoter (Fig. 2B, upper
panels, lanes 7, 15, 19). Tamoxifen-stimulat-
ed coactivator recruitment was accompanied
by histone acetylation (Fig. 2B, upper panels,
lane 23) consistent with the current model of
gene activation by nuclear receptors. Tamox-
ifen-induced coactivator recruitment to the
c-Myc promoter was also detected in ECC-1
cells and to the IGF-I promoter in both en-
dometrial cancer cell lines (10).

As ER regulates the rate of gene transcrip-
tion through its association with coregulators,
the overall balance of the relative expression
levels of coactivators and corepressors may be
an important determinant of the tissue-specific-
ity of SERMs. Examination of the expression
levels of ERa and a variety of coregulators
indicated similar levels of expression in MCF-7
and Ishikawa cells with the exception of SRC-1
(Fig. 3A), whose expression is low in MCF-7
compared with that in Ishikawa cells. The high
level of SRC-1 expression in endometrial cells
as compared with mammary cells was con-
firmed in several different cell lines (10). To
investigate whether this difference in the level of

SRC-1 expression explained the ability of ta-
moxifen to stimulate c-Myc and IGF-I transcrip-
tion, we first overexpressed SRC-1 in MCF-7
cells. Remarkably, expression of both c–Myc
and IGF-I was stimulated by tamoxifen in SRC-
1–transfected MCF-7 cells but not in GRIP1- or
AIB1-transfected cells (Fig. 3B). This finding
supports our conclusion that a high level of
SRC-1 expression is sufficient to support the
agonist activity of tamoxifen.

To determine whether SRC-1 is required for
tamoxifen agonism, we silenced its expression
in Ishikawa cells by RNA interference using
short interfering RNA (siRNA) molecules (10,
19). Reduction of SRC-1 levels in Ishikawa
cells eliminated tamoxifen-stimulated expres-
sion of c-Myc and IGF-I (Fig. 4A). It was
interesting that SRC-1 silencing had only mini-
mal effects on the E2-stimulated expression of
c-Myc and IGF-I. In contrast, silencing of AIB1
expression led to a modest decrease in both E2-
and tamoxifen-stimulated expression of c-Myc
and IGF-I (Fig. 4A). These results strongly sug-
gest that, although AIB1 plays a role in the
maximal activity of both estrogen and tamox-
ifen, SRC-1 is specifically necessary for the
agonist activity of tamoxifen in endometrial
cells. These observations also suggest that the

specific coactivator requirements for estrogen-
and tamoxifen-stimulated gene expression are
distinct.

To determine whether SRC-1 expression
was required for the growth stimulatory effects
of tamoxifen in endometrial cells, we examined
the effects of SRC-1 silencing on tamoxifen-
stimulated cell-cycle progression in Ishikawa
cells (Fig. 4B). As was the case for c-Myc and
IGF-I expression, SRC-1 silencing abolished
tamoxifen-stimulated cell-cycle progression but
had only minimal effects on E2-stimulated cell-
cycle progression. These results indicate that
SRC-1 is a necessary determinant for the estro-
genic effect of tamoxifen in endometrial cells.

In summary, in the breast where tamoxifen
and raloxifene are both antagonists, both
SERMs induce the recruitment of corepressors
and not coactivators to ER target promoters. In
contrast, in the endometrium where tamoxifen
acts as an agonist and raloxifene as an antago-
nist, tamoxifen recruits coactivators instead of
corepressors to ER target genes that do not
contain a classical ERE, such as c-Myc and
IGF-I. Finally, SRC-1 is required for the estrogen-
like properties of tamoxifen in the endometrium.

It is unclear how coactivators are recruited
by tamoxifen-bound ER to promoters that do
not contain an ERE. Whether the ER AF-1
domain implicated in the agonist activity of
tamoxifen (20–23) or the reported in vitro
interactions of SRC-1 with AF-1 (24, 25) are
relevant to the recruitment of SRC-1 by ta-
moxifen-bound ER remains to be shown. It
may be that the binding of coactivators to
tamoxifen-liganded ER is blocked when ER
is directly bound to DNA through a classical
ERE, but that when interacting with promot-
ers indirectly, tamoxifen-bound ER adopts a
conformation that promotes SRC-1 binding.

These experiments are based on a limited
number of ER target genes and coactivators. It
remains to be determined if c-Myc and/or IGF-I
are the critical genes involved in tamoxifen-
stimulated endometrial growth or endometrial
cancer. However, c-Myc has been implicated in
cell growth, proliferation, apoptosis, and malig-
nant transformation (26). In addition, overex-
pression of c-Myc and c-Myc gene amplifica-
tion have been reported in a variety of malig-
nancies including endometrial cancer (27, 28).
Likewise, the roles of IGF-I in cell proliferation
and survival have also been well established
(29).

Finally, our results do not exclude the pos-
sibility that other as-yet-undetermined cell-spe-
cific factors may contribute to the spectrum of
SERM action. Our findings, however, do estab-
lish that cell type– and promoter-specific differ-
ences in coregulator recruitment plays a critical
role in determining SERM function in the breast
and uterus and offers a paradigm for understand-
ing SERM action in other important target or-
gans such as the brain, skeleton, and cardiovas-
cular system.

Fig. 3. (A) Comparison of
SRC-1 expression levels
in endometrial carcinoma
cells and in mammary
carcinoma cells. (A) Cells
were grown in phenol
red–free DMEM supple-
mented with 5% char-
coal -dextran–stripped
FBS. Total proteins were
extracted, and Western
blottings were performed
using antibodies against
ERa, CBP, AIB1, GRIP1,
SRC-1, p300 (mouse
monoclonal RW128),
NCoR, SMRT, HDAC2,
and HDAC4. (B) Stimula-
tion of c-Myc expression
by tamoxifen in MCF-7
cells overexpressing SRC-
1. MCF-7 cells were seed-
ed in phenol red–free
DMEM supplemented

with 5% charcoal-dextran-stripped FBS for 24 hours and were transfected with an expression construct
for SRC-1, GRIP1, or AIB1 by using the Lipofectamine 2000 Reagent (Invitrogen Corp.). Forty-eight hours
after transfection, cells were treated with 100 nM of 17b-estradiol (E2), 1 mM of 4-hydroxytamoxifen
(tamoxifen), or 1 mM of raloxifene for different times. The TRIzol Reagent was used to extract total
RNAs for measuring mRNA level by real-time RT-PCR.
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Television Viewing and
Aggressive Behavior During
Adolescence and Adulthood

Jeffrey G. Johnson,1* Patricia Cohen,1 Elizabeth M. Smailes,1

Stephanie Kasen,1 Judith S. Brook2

Television viewing and aggressive behavior were assessed over a 17-year in-
terval in a community sample of 707 individuals. There was a significant
association between the amount of time spent watching television during
adolescence and early adulthood and the likelihood of subsequent aggressive
acts against others. This association remained significant after previous ag-
gressive behavior, childhood neglect, family income, neighborhood violence,
parental education, and psychiatric disorders were controlled statistically.

Three to five violent acts are depicted in an
average hour of prime-time television and
20 to 25 violent acts are depicted in an
average hour of children’s television (1–3).

Research has indicated that viewing televi-
sion violence is associated with aggressive
behavior (4–6 ). However, important ques-
tions regarding the nature and direction of

this association remain unanswered. Sever-
al theories hypothesize that television vio-
lence contributes to the development of
aggressive behavior (7, 8). An alternative
hypothesis is that some or all of the asso-
ciation is due to a preference for violent
television programs among aggressive in-
dividuals (9). Research has provided sup-
port for both hypotheses (10). It has also
been hypothesized that certain environmen-
tal characteristics, such as living in an un-
safe neighborhood and being raised by ne-
glectful parents increase the likelihood of
both aggressive behavior and viewing tele-
vised violence. This hypothesis has not
been extensively investigated.

Experimental and longitudinal studies
have provided considerable support for the
hypothesis that children’s viewing of tele-
vised violence is associated with subse-
quent increases in aggressive behavior (11).
However, most of these studies have inves-

Fig. 4. (A) The effect of SRC-1
silencing on tamoxifen-stimulated
gene expression in Ishikawa cells.
Ishikawa cells were seeded into
10-cm polystyrene cell-culture
dishes (Becton Dickinson, Franklin
Lakes, NJ) with phenol red–free
DMEM supplemented with 5%
charcoal-dextran-stripped FBS for
24 hours and transfected with 5
mg/dish of double-stranded, short
interfering RNAs (siRNAs) for SRC-
1, AIB1, or lamin A/C using the
Oligofectamine Reagent (Invitro-
gen Corp.). Single-stranded RNAs
were synthesized by Dharmacon
Research, (Lafayette, CO). Before
transfection, single-stranded RNAs
were incubated at 90°C for 1 min,
followed by annealing in annealing
buffer (100 mM potassium ace-
tate, 30 mM Hepes-KOH, pH 7.4,
and 2 mM magnesium acetate) at
37°C for 2 hours. Forty-eight
hours after transfection, cells were
treated with 100 nM of 17b-estra-
diol (E2), 1 mM of 4-hydroxyta-
moxifen (Tamoxifen), or 1 mM of
raloxifene. The TRIzol reagent was
used to extract total RNAs for an-
alyzing c-Myc and IGF-I mRNA by
real-time RT-PCR. Transfection ef-
ficiency was monitored by co-
transfection with an Escherichia
coli lacZ construct. (B) The effect
of SRC-1 silencing on tamoxifen-
stimulated cell-cycle entry. Ish-
ikawa cells grown in phenol red–
free DMEM supplemented with
5% charcoal-dextran–stripped FBS
were cotransfected with 5 mg of
SRC-1 siRNAs and a green fluorescent protein construct (pEGFP, Clontech) or cotransfected with
lamin A siRNA and pEGFP. Forty-eight hours after transfection, cells were treated with 100 nM of
17b-estradiol (E2) or 1 mM of 4-hydroxytamoxifen ( T) for another 16 hours. Cells were then
collected and resuspended in PBS with 2% glucose and 3% paraformaldehyde. After permeabili-
zation with ethanol, cells were stained with propidium iodide solution (69 mM propidium iodide and
38 mM sodium citrate). Cell-cycle data were collected with FACScan (Becton Dickinson Immuno-
cytochemistry System) and analyzed with ModFit LT (Verity Software House, Topsham, ME).
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